917 resultados para erbium doping
Resumo:
Nanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2 and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2 particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.
Resumo:
Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We theoretically investigated how the formation of oxygen vacancies and the addition of niobium and chromium atoms as dopants modify the varistor properties of TiO2. The calculations were carried out at the HF level using a contracted basis set, developed by Huzinaga et al.. to represent the atomic centers on the (110) surface for the large (TiO2)(15) cluster model. The change of the values for the net atomic charges and band gap after oxygen vacancy formation and the presence of dopants in the lattice are analyzed and discussed. It is shown that the formation of oxygen vacancies decreases the band gap while an opposite effect is found when dopants are located in the reduced surface. The theoretical results are compared with available experimental data. A plausible explanation of the varistor behavior of this system is proposed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The effect of La2O3 addition on the densification and electrical properties of the (0.9895 - x) SnO2 + 0.01 CoO + 0.0005 Nb2O5 + x La2O5 system, where x = 0.0005 or 0.00075, was considered in this study. The samples were sintered at 1300 degreesC for 2 and 4 h and a single SnO2 phase was identified by X-ray diffraction. Microstructure analysis by scanning electron microscopy showed that the affect of La2O3 addition is to decrease the SnO2 grain size. J versus E curves indicated that the system exhibits a varistor behavior and the effect of La2O3 is to increase both the non-linear coefficient (alpha) and the breakdown voltage (E-2). Considering the Schottky thermionic emission model the potential height and the width were estimated. The addition of small amounts of La2O3 to the basic system increases the potential barrier height and decreases both grain size and potential barrier width. (C) 2001 Kluwer Academic Publishers.
Resumo:
In the present article it is shown that a corona discharge can be employed to dope thin films of polyaniline (PANI) coated on poly(ethylene terephthalate) films, allowing the electrical conductivity to be tuned within the range 10(-10) to 0.3 S cm(-1). A study of the effect of different corona conditions, namely corona treatment for positive and negative polarities, air humidity, treatment time, corona current, and the geometry of the corona triode, on the electrical conductivity of the polyaniline is presented. The results indicate that the corona discharge leads to protonic doping of polyaniline similar to that which occurs in conventional protonic acid solution doping. Atomic force microscopic analysis shows that, as the PANI is exposed to the corona discharge, its globular morphology is disrupted leading to the appearance of droplet-like features and a significant decrease in the average height and surface roughness. Doping by corona discharge presents several advantages over the conventional solution method namely that it is a dry process which does not require use of chemicals reagents, and which is both rapid and avoids dopant migration. The latter can be important for applications of PANI in microelectronic devices. (C) 2000 American Institute of Physics. [S0021-8979(00)01608-X].
Resumo:
Luminescent SnO2: x%mol Er3+ (x=0.1-2.0) thin films have been spin coated on borosilicate and silica substrates from water colloidal suspensions that could be prepared containing up to 40% in weight SnO2 nanocrystalline powders. High Resolution Transmission Electron Microscopy results show the well known SnO2 cassiterite structure and nanocrystallites around 10 nm in diameter, corroborating results from X-ray diffraction. Mono and multi layers have been prepared from the stable colloidal suspensions and films thickness was observed to increase linearly, up to 200 nm, with the colloidal suspensions nanoparticles amount. Excitation and emission spectra have been measured and Er3+ ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration lower than 0.05 mol%. Er3+ ions also appear segregated at the grains surface for higher doping concentration. The optical parameters (refractive index, thickness and propagating modes) of a waveguide sample were measured at 632.8 and 543.4 nm by the prism coupling technique. A monomodal waveguide was obtained with attenuation loss of 3.5 dB/cm along a 2.5 cm optical path.
Resumo:
Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited by CW laser radiation at 1540 nm and under cryogenic temperatures is reported. Intense upconversion emission signals around 530, 550 and 660 nm corresponding to the H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground state were generated and studied as a function of the laser intensity and temperature. The upconversion excitation mechanism of the Er3+ ions emitting energy levels was accomplished via stepwise multiphoton absorption. The green upconversion luminescence exhibited a fivefold intensity enhancement when the temperature of the sample was varied in the range between 5 and 300 K. A maximum green upconversion intensity was attained around 120 K and a steady decreasing behavior for higher temperatures up to 300 K was observed. A model based upon conventional rate equations was used to model the observed temperature evolution of the upconversion luminescence. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effect of Ta2O5 doping in 0.99SnO(2). 0.01CoO on the microstructure and electrical properties of this ceramic were analyzed in this study. The grain size was found to decrease from 6.87 mu m to 5.68 mu m when the Ta2O5 concentration increased from 0.050 to 0.075 mol%. DC electrical characterization showed a dramatic increase in the current loss and decrease in the non-linear coefficient with the increase of the Ta2O5 concentration. The conduction mechanism is by thermionic emission and the potential barriers are of Schottky type, separated by a thin film. (C) 2000 Kluwer Academic Publishers.