987 resultados para carbon-flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the applications of anew carbon paste electrode containing fibers of coconut (Cocus nucifera L) fruit, which are very rich in peroxidase enzymes naturally immobilized on its structure. The new sensor was applied for the amperometric quantification of benzoyl peroxide in facial creams and dermatological shampoos. The amperometric measurements were performed in 0.1 mol L(-1) phosphate buffer (pH 5.2), at 0.0 V (versus Ag/AgCl). On these conditions, benzoyl peroxide was rapidly determined in the 5.0-55 mu mol L(-1), with a detection limit of 2.5 mu mol L(-1) (s/n = 3), response time of 4.1 s (90% of the steady state) and sensitivity limit of 0.33 A mol L(-1) cm(-2). The amperometric results are in good agreement with those obtained by spectrophotometric technique, used as a standard method. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen peroxide was determined in oral antiseptic and bleach samples using a flow-injection system with amperometric detection. A glassy carbon electrode modified by electrochemical deposition of ruthenium oxide hexacyanoferrate was used as working electrode and a homemade Ag/AgCl (saturated KCl) electrode and a platinum wire were used as reference and counter electrodes, respectively. The electrocatalytic reduction process allowed the determination of hydrogen peroxide at 0.0 V. A linear relationship between the cathodic peak current and concentration of hydrogen peroxide was obtained in the range 10-5000 mu mol L(-1) with detection and quantification limits of 1.7 (S/N = 3) and 5.9 (S/N = 10) mu mol L(-1), respectively. The repeatability of the method was evaluated using a 500 mu mol L(-1) hydrogen peroxide solution, the value obtained being 1.6% (n = 14). A sampling rate of 112 samples h(-1) was achieved at optimised conditions. The method was employed for the quantification of hydrogen peroxide in two commercial samples and the results were in agreement with those obtained by using a recommended procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anodic oxidation of ascorbic acid on a ruthenium oxide hexacyanoferrate modified electrode was characterized by cyclic voltammetry. On this modified surface, the electrocatalytic process allows the determination of ascorbic acid to be performed at 0.0 V and pH 6.9 with a limit of detection of 2.2 mu M in a flow injection configuration. Under this experimental condition, no interference from glucose, nitrite and uric acid was noticed. Lower detection limit values were obtained by measuring flow injection analysis (FIA) responses at 0.4 V (0.14 mu M), but a concurrent loss of selectivity is expected at this more positive potential. Under optimal FIA operating conditions, the linear response of the method was extended up to 1 mM ascorbic acid. The repeatability of the method for injections of a 1.0 mM ascorbic acid solution was 2.0% (n=10). The usefulness of the method was demonstrated by an addition-recovery experiment with urine samples and the recovered values were in the 98-104% range. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the automation of a fully electrochemical system for preconcentration, cleanup, separation and detection, comprising the hyphenation of a thin layer electrochemical flow cell with CE coupled with contactless conductivity detection (CE-C(4)D). Traces of heavy metal ions were extracted from the pulsed-flowing sample and accumulated on a glassy carbon working electrode by electroreduction for some minutes. Anodic stripping of the accumulated metals was synchronized with hydrodynamic injection into the capillary. The effect of the angle of the slant polished tip of the CE capillary and its orientation against the working electrode in the electrochemical preconcentration (EPC) flow cell and of the accumulation time were studied, aiming at maximum CE-C(4)D signal enhancement. After 6 min of EPC, enhancement factors close to 50 times were obtained for thallium, lead, cadmium and copper ions, and about 16 for zinc ions. Limits of detection below 25 nmol/L were estimated for all target analytes but zinc. A second separation dimension was added to the CE separation capabilities by staircase scanning of the potentiostatic deposition and/or stripping potentials of metal ions, as implemented with the EPC-CE-C(4)D flow system. A matrix exchange between the deposition and stripping steps, highly valuable for sample cleanup, can be straightforwardly programmed with the multi-pumping flow management system. The automated simultaneous determination of the traces of five accumulable heavy metals together with four non-accumulated alkaline and alkaline earth metals in a single run was demonstrated, to highlight the potentiality of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructures and textures of coarse grained cold rolled, partially recrystallized and fully recrystallized low carbon and interstitial free steel were examined by optical microscopy, scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The recrystallization textures of the two grades are markedly different, with the low carbon steel having a predominantly Goss {11O}<OOl> texture and the interstitial free steel having a <1ll>/1ND texture with a strong {III }<112> component. One possible explanation for the texture difference is that less severe localization of flow during deformation of interstitial free steels causes less Goss nuclei to be generated. While some support for this view is provided by the results presented in this paper, the results suggest that another mechanism may be at least partially responsible. Examination of micro
shear bands on the surface of pre-polished samples showed that a higher proportion of micro shear bands remained active at high rolling reductions in the low carbon steel, compared with the interstitial free grade. Regions of Goss orientation within bands that have ceased to operate rotate to
near-{ III }<112> orientations with further deformation. Consequently, the recrystallization texture of coarse grained interstitial free steels can be rationalized by a reduction in the availability of Goss nuclei and an increase in the availability of {Ill }<112> nuclei due to a "Goss to {Ill }<112>" rotation within micro shear bands that have ceased to operate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of dynamic ferrite softening in a plain-carbon steel was investigated by torsion tests during warm deformation at 810 °C, in the two-phase (ferrite + austenite) region, and strain rate of 0.1 s−1 with different strains up to 50. The warm flow behaviour and ferrite microstructural parameters, such as grain size, misorientation angle across ferrite/ferrite boundaries, and the fraction of high-angle and low-angle grain/subgrain boundaries were quantified using electron back scatter diffraction. The results show that with increasing strain up to not, vert, similar2, the ferrite grain size and fraction of high-angle boundaries rapidly decrease and the fraction of low-angle boundaries increases. However, these parameters remain approximately unchanged with increasing strain from not, vert, similar2 to 50. The dynamic softening mechanism observed during large strain ferritic deformation is explained by dynamic recovery and continuous dynamic recrystallization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferrite grain/subgrain structures evolution during the extended dynamic softening of a plain low carbon steel was investigated throughout the large strain warm deformation by hot torsion. Microstructural analysis with electron back-scattering diffraction (EBSD) scanning electron microscope (FEG/SEM) was carried out on the ferrite microstructural parameters. The results showed that the warm flow stress–strain curves are similar to those affected only by dynamic softening and an extended warm flow softening is seen during large strain deformation up to 30. Furthermore, with an increase in strain up to ~ vert, similar1 the grain size of ferrite, misorientation angle and fraction of high-angle boundaries gradually decrease and fraction of low-angle boundaries increases. With a further increase in the strain beyond ~, vert, similar2, these parameters remain approximately unchanged. No evidence of discontinuous dynamic recrystallisation involving nucleation and growth of new grains was found within ferrite. Therefore, the dynamic softening mechanism observed during large strain ferritic deformation is explained by continuous dynamic recrystallization (CDRX).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale, high-density, and patterned carbon nanotubes (CNTs) on both pure Si and quartz (SiO2) substrates have been produced using different approaches. The CNTs were synthesized by pyrolysis of the ball-milled iron phthalocyanine (FePc) in a tube furnace under a Ar-5% H2 gas flow. Because patterned CNTs are difficult to grow directly on smooth and perfect single-crystalline Si wafer surface, mechanical scratches were created to help the selective deposition and growth of CNTs on the scratched areas. This simple process does not require pre-deposition of any metal catalysts. For SiO2 substrates, which can be readily covered by a CNT film, patterned CNTs are produced using a TEM grid as mask to cover the areas where CNTs are not needed. The growth temperature and vapor density have strong influence on the patterned CNT formation. The scratch areas with a special structure and a higher surface energy help the selective nucleation of CNTs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high sensitivity that can be attained using a bienzymatic system and mediated by the redox polymer [Os(bpy)2ClPyCH2NHpoly(allylamine)] (Os-PAA), has been verified by on-line interfacing of a rotating bioreactor and continuous-flow/stopped-flow/continuous-flow processing. When the hydrogen peroxide formed by LOx layer reaches the inner layer, the electronic flow between the immobilized peroxidase and the electrode surface produces a current, proportional to lactate concentration. The determination of lactate was possible with a limit of detection of 5 nmol l−1 in the processing of as many as 30 samples per hour. This arrangement allows working in undiluted milk samples with a good stability and reproducibility. Horseradish peroxidase [EC 1.11.1.7] and Os-PAA were covalently immobilized on the glassy carbon electrode surface (upper cell body), lactate oxidase [EC 1.1.3.x] was immobilized on a disk that can be rotated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic strain-induced transformation (DSIT) of austenite to ferrite was investigated under different undercooling conditions using three low carbon Si-Mn steels. The undercooling of austenite (ΔT) was controlled by varying the cooling rate between austenitization and deformation temperatures. Uniform DSIT ferrite grains (∼2.3 μm) were produced at a relatively high deformation temperature above 840°C using a low carbon high Si steel (0.077C-0.97Mn-1.35Si, mass%) in connection with a larger ΔT. The critical conditions for DSIT were determined based on the flow stress-strain curves measured during hot compression tests. Influence of deformation temperature on DSIT of low carbon Si-added steel was also discussed.