160 resultados para bioanalytical
Resumo:
The concentration of 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THCCOOH) in whole blood is used as a parameter for assessing the consumption behavior of cannabis consumers. The blood level of THCCOOH-glucuronide might provide additional information about the frequency of cannabis use. To verify this assumption, a column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the rapid and direct quantification of free and glucuronidated THCCOOH in human whole blood was newly developed. The method comprised protein precipitation, followed by injection of the processed sample onto a trapping column and subsequent gradient elution to an analytical column for separation and detection. The total LC run time was 4.5 min. Detection of the analytes was accomplished by electrospray ionization in positive ion mode and selected reaction monitoring using a triple-stage quadrupole mass spectrometer. The method was fully validated by evaluating the following parameters: linearity, lower limit of quantification, accuracy and imprecision, selectivity, extraction efficiency, matrix effect, carry-over, dilution integrity, analyte stability, and re-injection reproducibility. All acceptance criteria were analyzed and the predefined criteria met. Linearity ranged from 5.0 to 500 μg/L for both analytes. The method was successfully applied to whole blood samples from a large collective of cannabis consumers, demonstrating its applicability in the forensic field.
Resumo:
The forensic utility of fatty acid ethyl esters (FAEEs) in dried blood spots (DBS) as short-term confirmatory markers for ethanol intake was examined. An LC-MS/MS method for the determination of FAEEs in DBS was developed and validated to investigate FAEE formation and elimination in a drinking study, whereby eight subjects ingested 0.66-0.84 g/kg alcohol to reach blood alcohol concentrations (BAC) of 0.8 g/kg. Blood was taken every 1.5-2 h, BAC was determined, and dried blood spots were prepared, with 50 μL of blood, for the determination of FAEEs. Lower limits of quantitation (LLOQ) were between 15 and 37 ng/mL for the four major FAEEs. Validation data are presented in detail. In the drinking study, ethyl palmitate and ethyl oleate proved to be the two most suitable markers for FAEE determination. Maximum FAEE concentrations were reached in samples taken 2 or 4 h after the start of drinking. The following mean peak concentrations (c̅ max) were reached: ethyl myristate 14 ± 4 ng/mL, ethyl palmitate 144 ± 35 ng/mL, ethyl oleate 125 ± 55 ng/mL, ethyl stearate 71 ± 21 ng/mL, total FAEEs 344 ± 91 ng/mL. Detectability of FAEEs was found to be on the same time scale as BAC. In liquid blood samples containing ethanol, FAEE concentrations increase post-sampling. This study shows that the use of DBS fixation prevents additional FAEE formation in blood samples containing ethanol. Positive FAEE results obtained by DBS analysis can be used as evidence for the presence of ethanol in the original blood sample. Graphical Abstract Time courses for fatty acid ethyl ester (FAEE) concentrations in DBS and ethanol concentrations for subject 1 over a period of 7 h. Ethanol ingestion occured during the first hour of the time course.
Resumo:
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.
Resumo:
O metabolismo do triptofano (Trp) se dá pela via das quinureninas (QUIN), pela via serotoninérgica (SER) e pela via das aminas traço. A primeira gera QUIN e uma variedade de outros metabólitos secundários. Quando conduzida pela enzima indolamina 2,3 dioxigenase (IDO) contribui para os fenômenos de tolerância e imune escape de células tumorais; e quando conduzida pela triptofano 2,3 dioxigenase (TDO) no fígado, participa na síntese da niacina e NAD. A via SER leva à formação do neurotransmissor serotonina (SER), que pode gerar o hormônio melatonina (MEL), respectivamente e outros metabólitos biologicamente ativos. Outra via menos estudada, a via das aminas traço, produz produtos neuroativos. Dada a abrangência e importância das rotas metabólicas do Trp, nós desenvolvemos e validamos uma metodologia bioanalítica robusta, seletiva e sensível por cromatografia líquida de alta eficiência (HPLC), acoplado espectrometria de massas (MS) para a determinação simultânea do Trp e seus 15 metabólitos. Para tanto, escolhemos para a avaliação das três vias, linhagens de glioma humano. A escolha por este tipo celular deveu-se ao grande interesse de estudos de metabolismo de Trp em células tumorais, no qual células de glioma tem sido modelo. Nos ensaios com as células de glioma acompanhamos os efeitos de um indutor e inibidores da primeira etapa de metabolização do Trp pela via das quinureninas, ou seja, IFN-γ (indutor da IDO), 1-metiltriptofano (1-MT; inibidor competitivo da IDO) e 680C91 (inibidor seletivo da TDO). Pudemos observar o impacto que a indução ou a inibição do primeiro passo teve sobre os metabólitos subsequentes e as diferenças no metabolismo das duas linhagens estudadas, A172 e T98G. A linhagem T98G só tem atividade de IDO, enquanto que a A172 tem tanto atividade IDO quanto TDO. A indução por IFN-γ mostrou que essa citocina não só atua na formação da via QUIN, mas possui um impacto modesto nas demais rotas. Observamos também que a inibição do 1-MT mostrou seu impacto nos metabólitos invdividualmente, do que a simples relação Trp-QUIN. Contudo, nosso resultados nos permitiu mostrar pela primeira vez a descrição completa dessas vias, em especial nessas linhagens celulares, podendo supor estratégias terapêuticas nessas rotas que estão relacionadas a progressão ou não tumoral.
Resumo:
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Resumo:
High-performance liquid chromatography coupled by an electrospray ion source to a tandem mass spectrometer (HPLC-EST-MS/ MS) is the current analytical method of choice for quantitation of analytes in biological matrices. With HPLC-ESI-MS/MS having the characteristics of high selectivity, sensitivity, and throughput, this technology is being increasingly used in the clinical laboratory. An important issue to be addressed in method development, validation, and routine use of HPLC-ESI-MS/MS is matrix effects. Matrix effects are the alteration of ionization efficiency by the presence of coeluting substances. These effects are unseen in the chromatograrn but have deleterious impact on methods accuracy and sensitivity. The two common ways to assess matrix effects are either by the postextraction addition method or the postcolumn infusion method. To remove or minimize matrix effects, modification to the sample extraction methodology and improved chromatographic separation must be performed. These two parameters are linked together and form the basis of developing a successful and robust quantitative HPLC-EST-MS/MS method. Due to the heterogenous nature of the population being studied, the variability of a method must be assessed in samples taken from a variety of subjects. In this paper, the major aspects of matrix effects are discussed with an approach to address matrix effects during method validation proposed. (c) 2004 The Canadian Society of Clinical Chemists. All rights reserved.
Resumo:
Quantum dots (Qdots) are fluorescent nanoparticles that have great potential as detection agents in biological applications. Their optical properties, including photostability and narrow, symmetrical emission bands with large Stokes shifts, and the potential for multiplexing of many different colours, give them significant advantages over traditionally used fluorescent dyes. Here, we report the straightforward generation of stable, covalent quantum dot-protein A/G bioconjugates that will be able to bind to almost any IgG antibody, and therefore can be used in many applications. An additional advantage is that the requirement for a secondary antibody is removed, simplifying experimental design. To demonstrate their use, we show their application in multiplexed western blotting. The sensitivity of Qdot conjugates is found to be superior to fluorescent dyes, and comparable to, or potentially better than, enhanced chemiluminescence. We show a true biological validation using a four-colour multiplexed western blot against a complex cell lysate background, and have significantly improved previously reported non-specific binding of the Qdots to cellular proteins.
Resumo:
In the context of products from certain regions or countries being banned because of an identified or non-identified hazard, proof of geographical origin is essential with regard to feed and food safety issues. Usually, the product labeling of an affected feed lot shows origin, and the paper documentation shows traceability. Incorrect product labeling is common in embargo situations, however, and alternative analytical strategies for controlling feed authenticity are therefore needed. In this study, distillers' dried grains and solubles (DDGS) were chosen as the product on which to base a comparison of analytical strategies aimed at identifying the most appropriate one. Various analytical techniques were investigated for their ability to authenticate DDGS, including spectroscopic and spectrometric techniques combined with multivariate data analysis, as well as proven techniques for authenticating food, such as DNA analysis and stable isotope ratio analysis. An external validation procedure (called the system challenge) was used to analyze sample sets blind and to compare analytical techniques. All the techniques were adapted so as to be applicable to the DDGS matrix. They produced positive results in determining the botanical origin of DDGS (corn vs. wheat), and several of them were able to determine the geographical origin of the DDGS in the sample set. The maintenance and extension of the databanks generated in this study through the analysis of new authentic samples from a single location are essential in order to monitor developments and processing that could affect authentication.
Resumo:
After initial efforts in the late 1980s, the interest in thermochemiluminescence (TCL) as an effective detection technique has gradually faded due to some drawbacks, such as the high temperatures required to trigger the light emission and the relatively low intensities, which determined a poor sensitivity. Recent advances made with the adoption of variably functionalized 1,2-dioxetanes as innovative luminophores, have proved to be a promising approach for the development of reagentless and ultrasensitive detection methods exploitable in biosensors by using TCL compounds as labels, as either single molecules or included in modified nanoparticles. In this PhD Thesis, a novel class of N-substituted acridine-containing 1,2-dioxetanes was designed, synthesized, and characterized as universal TCL probes endowed with optimal emission-triggering temperatures and higher detectability particularly useful in bioanalytical assays. The different decorations introduced by the insertion of both electron donating (EDGs) and electron withdrawing groups (EWGs) at the 2- and 7-positions of acridine fluorophore was found to profoundly affect the photophysical properties and the activation parameters of the final 1,2-dioxetane products. Challenges in the synthesis of 1,2-dioxetanes were tackled with the recourse to continuous flow photochemistry to achieve the target parent compound in high yields, short reaction time, and easy scalability. Computational studies were also carried out to predict the olefins reactivity in the crucial photooxygenation reaction as well as the final products stability. The preliminary application of TCL prototype molecule has been performed in HaCaT cell lines showing the ability of these molecules to be detected in real biological samples and cell-based assays. Finally, attempts on the characterization of 1,2-dioxetanes in different environments (solid state, optical glue and nanosystems) and the development of bioconjugated TCL probes will be also presented and discussed.
Resumo:
Biomarkers are biological indicators of human health conditions. Their ultra-sensitive quantification is of paramount importance in clinical monitoring and early disease diagnosis. Biosensors are simple and easy-to-use analytical devices and, in their world, electrochemiluminescence (ECL) is one of the most promising analytical techniques that needs an ever-increasing sensitivity for improving its clinical effectiveness. Scope of this project was the investigation of the ECL generation mechanisms for enhancing the ECL intensity also through the identification of suitable nanostructures. The combination of nanotechnologies, microscopy and ECL has proved to be a very successful strategy to improve the analytical efficiency of ECL in one of its most promising bioanalytical approaches, the bead-based immunoassay. Nanosystems, such as [Ru(bpy)3]2+-dye-doped nanoparticles (DDSNPs) and Bodipy Carbon Nanodots, have been used to improve the sensitivity of ECL techniques thanks to their advantageous and tuneable properties, reaching a signal increase of 750% in DDSNPs-bead-based immunoassay system. In this thesis, an investigation of size and distance effects on the ECL mechanisms was carried out through the innovative combination of ECL microscopy and electrochemical mapping of radicals. It allowed the discovery of an unexpected and highly efficient mechanistic path for ECL generation at small distances from the electrode surface. It was exploited and enhanced through the addition of a branched amine DPIBA to the usual coreactant TPrA solution for enhancing the ECL efficiency until a maximum of 128%. Finally, a beads-based immunoassay and an immunosensor specific for cardiac Troponin I were built exploiting previous results and carbon nanotubes features. They created a conductive layer around beads enhancing the signal by 70% and activating an ECL mechanism unobserved before in such systems. In conclusion, the combination of ECL microscopy and nanotechnology and the deep understanding of the mechanisms responsible for the ECL emission led to a great enhancement in the signal.