886 resultados para activity patterns
Resumo:
Humans imitate biological movements faster than non-biological movements. The faster response has been attributed to an activation of the human mirror neuron system, which is thought to match observation and execution of actions. However, it is unclear which cortical areas are responsible for this behavioural advantage. Also, little is known about the timing of activations. Using whole-head magnetoencephalography we recorded neuronal responses to single biological finger movements and non-biological dot movements while the subjects were required to perform an imitation task or an observation task, respectively. Previous imaging studies on the human mirror neurone system suggested that activation in response to biological movements would be stronger in ventral premotor, parietal and superior temporal regions. In accordance with previous studies, reaction times to biological movements were faster than those to dot movements in all subjects. The analysis of evoked magnetic fields revealed that the reaction time benefit was paralleled by stronger and earlier activation of the left temporo-occipital cortex, right superior temporal area and right ventral motor/premotor area. The activity patterns suggest that the latter areas mediate the observed behavioural advantage of biological movements and indicate a predominant contribution of the right temporo-frontal hemisphere to action observation–execution matching processes in intransitive movements, which has not been reported previously.
Resumo:
Les patients diabétiques de type 1 (DT1) ont avantage à avoir un bon contrôle glycémique pour réduire les effets négatifs à court et long terme d’un mauvais contrôle glycémique sur leur santé. Pour contrôler leur glycémie, ils doivent prendre de l’insuline, mais il est aussi recommandé qu’ils aient de bonnes habitudes de vie comme une nutrition appropriée et une pratique adéquate d’activité physique. Par contre, les patients DT1 ne suivent généralement pas les recommandations en activité physique et une partie du problème vient de leurs barrières personnelles à un style de vie actif, telle la peur des hypoglycémies. L’utilisation de la pompe comme traitement à l’insuline aide à mieux contrôler la glycémie, plus précisément l’hémoglobine glyquée, que les injections d’insuline, et le dispositif est de plus en plus prescrit chez les enfants et adolescents. Par contre, son impact sur la pratique des activités sédentaire et physique n’est pas encore bien connu. L’objectif de la présente étude est donc de révéler le profil d’activité physique complet, incluant les barrières à l’exercice et les habitudes de vie des parents, des enfants et adolescents DT1, selon leur type de traitement à l’insuline (pompe ou injections). L’étude a été conduite à la clinique d’endocrinologie du Centre hospitalier universitaire de Sainte-Justine (Montréal, Canada). Un questionnaire auto-administré a été complété par 188 patients DT1 âgés de 6 à 17 ans et un de leurs parents. Soixante pourcent des patients étaient des utilisateurs de la pompe à insuline. Il n’y avait pas de différence significative pour aucune des composantes du profil d’activité physique, des habitudes sédentaires et des barrières à l’exercice entre les patients DT1 utilisant les injections et ceux utilisant la pompe. La peur de faire des hypoglycémies était la barrière à l’activité physique principale pour les deux groupes de traitement. Les adolescents dont les parents pratiquaient une plus grande variété d’activités physiques faisaient plus d’activité physique d’intensité moyenne à élevée et passaient moins de temps devant les écrans. En conclusion, le type de traitement n’était pas associé à un style de vie plus sain chez les patients pédiatriques DT1, mais un profil d’activité physique parental varié était le facteur principal d’intérêt pour des habitudes de vie plus saines chez les adolescents DT1.
Resumo:
The ultimate goal of wildlife recovery is abundance growth of a species, though it must also involve the reestablishment of the species’ ecological role within ecosystems frequently modified by humans. Reestablishment and subsequent recovery may depend on the species’ degree of adaptive behavior as well as the duration of their functional absence and the extent of ecosystem alteration. In cases of long extirpations or extensive alteration, successful reestablishment may entail adjusting foraging behavior, targeting new prey species, and encountering unfamiliar predatory or competitive regimes. Recovering species must also increasingly tolerate heightened anthropogenic presence, particularly within densely inhabited coastal zones. In recent decades, gray seals (Halichoerus grypus) recovered from exploitation, depletion, and partial extirpation in the Northwest Atlantic. On Cape Cod, MA, USA, gray seals have reestablished growing breeding colonies and seasonally interact with migratory white sharks (Carcarodon carcharias). Though well-studied in portions of their range due to concerns over piscivorous impacts on valuable groundfish, there are broad knowledge gaps regarding their ecological role to US marine ecosystems. Furthermore, there are few studies that explicitly analyze gray seal behavior under direct risk of documented shark predation.
In this dissertation, I apply a behavioral and movement ecology approach to telemetry data to understand gray seal abundance and activity patterns along the coast of Cape Cod. This coastal focus complements extensive research documenting and describing offshore movement and foraging behavior and allows me to address questions about movement decisions and risk allocation. Using beach counts of seals visible in satellite imagery, I estimate the total regional abundance of gray seals using correction factors from haul out behavior and demonstrate a sizeable prey base of gray seals locally. Analyzing intra-annual space use patterns, I document small, concentrated home ranges utilizing nearshore habitats that rapidly expand with shifting activity budgets to target disperse offshore habitats following seasonal declines in white sharks. During the season of dense shark presence, seals conducted abbreviated nocturnal foraging trips structured temporally around divergent use of crepuscular periods. The timing of coastal behavior with different levels of twilight indicate risk allocation patterns with diel cycles of empirical white shark activity. The emergence of risk allocation to explain unique behavioral and spatial patterns observed in these gray seals points to the importance of the restored predator-prey dynamic in gray seal behavior along Cape Cod.
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.
Resumo:
Les patients diabétiques de type 1 (DT1) ont avantage à avoir un bon contrôle glycémique pour réduire les effets négatifs à court et long terme d’un mauvais contrôle glycémique sur leur santé. Pour contrôler leur glycémie, ils doivent prendre de l’insuline, mais il est aussi recommandé qu’ils aient de bonnes habitudes de vie comme une nutrition appropriée et une pratique adéquate d’activité physique. Par contre, les patients DT1 ne suivent généralement pas les recommandations en activité physique et une partie du problème vient de leurs barrières personnelles à un style de vie actif, telle la peur des hypoglycémies. L’utilisation de la pompe comme traitement à l’insuline aide à mieux contrôler la glycémie, plus précisément l’hémoglobine glyquée, que les injections d’insuline, et le dispositif est de plus en plus prescrit chez les enfants et adolescents. Par contre, son impact sur la pratique des activités sédentaire et physique n’est pas encore bien connu. L’objectif de la présente étude est donc de révéler le profil d’activité physique complet, incluant les barrières à l’exercice et les habitudes de vie des parents, des enfants et adolescents DT1, selon leur type de traitement à l’insuline (pompe ou injections). L’étude a été conduite à la clinique d’endocrinologie du Centre hospitalier universitaire de Sainte-Justine (Montréal, Canada). Un questionnaire auto-administré a été complété par 188 patients DT1 âgés de 6 à 17 ans et un de leurs parents. Soixante pourcent des patients étaient des utilisateurs de la pompe à insuline. Il n’y avait pas de différence significative pour aucune des composantes du profil d’activité physique, des habitudes sédentaires et des barrières à l’exercice entre les patients DT1 utilisant les injections et ceux utilisant la pompe. La peur de faire des hypoglycémies était la barrière à l’activité physique principale pour les deux groupes de traitement. Les adolescents dont les parents pratiquaient une plus grande variété d’activités physiques faisaient plus d’activité physique d’intensité moyenne à élevée et passaient moins de temps devant les écrans. En conclusion, le type de traitement n’était pas associé à un style de vie plus sain chez les patients pédiatriques DT1, mais un profil d’activité physique parental varié était le facteur principal d’intérêt pour des habitudes de vie plus saines chez les adolescents DT1.
Resumo:
Highlights • We study diel behavioural differences in activity patterns in bigeye tuna. • Daytime activity patterns showed scale free movements consistent with searching. • Night-time activity showed simpler movements indicative of rich patch exploitation. • The results confirm predictions of the Lévy foraging hypothesis.
Resumo:
Highlights • We study diel behavioural differences in activity patterns in bigeye tuna. • Daytime activity patterns showed scale free movements consistent with searching. • Night-time activity showed simpler movements indicative of rich patch exploitation. • The results confirm predictions of the Lévy foraging hypothesis.
Resumo:
Recent efforts to develop large-scale neural architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason is that most conventional SOMs use a static encoding representation: Each input is typically represented by the fixed activation of a single node in the map layer. This not only carries information in an inefficient and unreliable way that impedes building robust multi-SOM neural architectures, but it is also inconsistent with rhythmic oscillations in biological neural networks. Here I develop and study an alternative encoding scheme that instead uses limit cycle attractors of multi-focal activity patterns to represent input patterns/sequences. Such a fundamental change in representation raises several questions: Can this be done effectively and reliably? If so, will map formation still occur? What properties would limit cycle SOMs exhibit? Could multiple such SOMs interact effectively? Could robust architectures based on such SOMs be built for practical applications? The principal results of examining these questions are as follows. First, conditions are established for limit cycle attractors to emerge in a SOM through self-organization when encoding both static and temporal sequence inputs. It is found that under appropriate conditions a set of learned limit cycles are stable, unique, and preserve input relationships. In spite of the continually changing activity in a limit cycle SOM, map formation continues to occur reliably. Next, associations between limit cycles in different SOMs are learned. It is shown that limit cycles in one SOM can be successfully retrieved by another SOM’s limit cycle activity. Control timings can be set quite arbitrarily during both training and activation. Importantly, the learned associations generalize to new inputs that have never been seen during training. Finally, a complete neural architecture based on multiple limit cycle SOMs is presented for robotic arm control. This architecture combines open-loop and closed-loop methods to achieve high accuracy and fast movements through smooth trajectories. The architecture is robust in that disrupting or damaging the system in a variety of ways does not completely destroy the system. I conclude that limit cycle SOMs have great potentials for use in constructing robust neural architectures.
Resumo:
El propósito de este artículo fue el de revisar la naturaleza de los patrones de movimiento de los niños, con el fin de entrelazarlos con las recomendaciones que se han establecido en cuanto a la actividad física que deben realizar y compararlas con las que tradicionalmente, se han seguido en el entorno costarricense. En una segunda parte del artículo se menciona al juego como la alternativa para rescatar el disfrute de moverse en los niños y de poder propiciar estilos de vida activa usando como elemento precursor las clases de educación física.
Resumo:
The brain is a network spanning multiple scales from subcellular to macroscopic. In this thesis I present four projects studying brain networks at different levels of abstraction. The first involves determining a functional connectivity network based on neural spike trains and using a graph theoretical method to cluster groups of neurons into putative cell assemblies. In the second project I model neural networks at a microscopic level. Using diferent clustered wiring schemes, I show that almost identical spatiotemporal activity patterns can be observed, demonstrating that there is a broad neuro-architectural basis to attain structured spatiotemporal dynamics. Remarkably, irrespective of the precise topological mechanism, this behavior can be predicted by examining the spectral properties of the synaptic weight matrix. The third project introduces, via two circuit architectures, a new paradigm for feedforward processing in which inhibitory neurons have the complex and pivotal role in governing information flow in cortical network models. Finally, I analyze axonal projections in sleep deprived mice using data collected as part of the Allen Institute's Mesoscopic Connectivity Atlas. After normalizing for experimental variability, the results indicate there is no single explanatory difference in the mesoscale network between control and sleep deprived mice. Using machine learning techniques, however, animal classification could be done at levels significantly above chance. This reveals that intricate changes in connectivity do occur due to chronic sleep deprivation.
Resumo:
This study analyze the consequences of unilateral and bilateral ablation based on ovigerous percentage, consecutive spawns, and secondary effects of the surgical process in the females of Macrobrachium rosenbergii (De Man, 1879). Two experiments were carried out with four and seven months old females in intermolt stage. Each experiment was comprised of control, unilateral and bilateral ablation. Eyestalk ablation was done with a bistoury with a topic hot cauterization followed by application of antibiotic pomades. The animals were maintained at constant temperature (28 ± 1,05ºC) and photoperiod of 12L: 12D within fibercement boxes with sandy bottom and biological filter. Females were observed once a day during fourteen weeks, registering gonadal condition, ecdysis and presence of spermatophore (mating) and spawning. Unilateral ablation technique is more efficient due to the anticipation of the first spawn, repeatability between spawns, expressive rate of ovigerous females and survival, that favored its applicability. Bilateral eyestalk ablation produced the mortality of ali the females with change in coloration and food activity patterns. These results corroborate other observations on penaeid shrimps. though bilateral ablation on some lobsters was a success. These results showing an interespecific variation and can be used in aquaculture projects.
Resumo:
Wildlife vaccination is increasingly being considered as an option for tuberculosis control. We combined data from laboratory trials and an ongoing field trial to assess the risk of an oral Mycobacterium bovis BCG vaccine and a prototype heat-inactivated Mycobacterium bovis preparation for Eurasian wild boar (Sus scrofa). We studied adverse reactions, BCG survival, BCG excretion, and bait uptake by nontarget species. No adverse reactions were observed after administration of BCG (n = 27) or inactivated M. bovis (n = 21). BCG was not found at necropsy (175 to 300 days postvaccination [n = 27]). No BCG excretion was detected in fecal samples (n = 162) or in urine or nasal, oral, or fecal swab samples at 258 days postvaccination (n = 29). In the field, we found no evidence of loss of BCG viability in baits collected after 36 h (temperature range, 11°C to 41°C). Camera trapping showed that wild boar (39%) and birds (56%) were the most frequent visitors to bait stations (selective feeders). Wild boar activity patterns were nocturnal, while diurnal activities were recorded for all bird species. We found large proportions of chewed capsules (29%) (likely ingestion of the vaccine) and lost baits (39%) (presumably consumed), and the proportion of chewed capsules showed a positive correlation with the presence of wild boar. Both results suggest proper bait consumption (68%). These results indicate that BCG vaccination in wild boar is safe and that, while bait consumption by other species is possible, this can be minimized by using selective cages and strict timing of bait deployment.
Resumo:
The emerging concept of psychobiotics—live microorganisms with a potential mental health benefit—represents a novel approach for the management of stress-related conditions. The majority of studies have focused on animal models. Recent preclinical studies have identified the B. longum 1714 strain as a putative psychobiotic with an impact on stress-related behaviors, physiology and cognitive performance. Whether such preclinical effects could be translated to healthy human volunteers remains unknown. We tested whether psychobiotic consumption could affect the stress response, cognition and brain activity patterns. In a within-participants design, healthy volunteers (N=22) completed cognitive assessments, resting electroencephalography and were exposed to a socially evaluated cold pressor test at baseline, post-placebo and post-psychobiotic. Increases in cortisol output and subjective anxiety in response to the socially evaluated cold pressor test were attenuated. Furthermore, daily reported stress was reduced by psychobiotic consumption. We also observed subtle improvements in hippocampus-dependent visuospatial memory performance, as well as enhanced frontal midline electroencephalographic mobility following psychobiotic consumption. These subtle but clear benefits are in line with the predicted impact from preclinical screening platforms. Our results indicate that consumption of B. longum 1714 is associated with reduced stress and improved memory. Further studies are warranted to evaluate the benefits of this putative psychobiotic in relevant stress-related conditions and to unravel the mechanisms underlying such effects.
Resumo:
Background: Preclinical studies have identified certain probiotics as psychobiotics a live microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) has been shown to reduce stress-related behaviour, corticosterone release and alter central expression of GABA receptors in an anxious mouse strain. However, it is unclear if this single putative psychobiotic strain has psychotropic activity in humans. Consequently, we aimed to examine if these promising preclinical findings could be translated to healthy human volunteers. Objectives: To determine the impact of L. rhamnosus on stress-related behaviours, physiology, inflammatory response, cognitive performance and brain activity patterns in healthy male participants. An 8 week, randomized, placebo-controlled, cross-over design was employed. Twenty-nine healthy male volunteers participated. Participants completed self-report stress measures, cognitive assessments and resting electroencephalography (EEG). Plasma IL10, IL1β, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR-4) agonist-induced cytokine release were determined by multiplex ELISA. Salivary cortisol was determined by ELISA and subjective stress measures were assessed before, during and after a socially evaluated cold pressor test (SECPT). Results: There was no overall effect of probiotic treatment on measures of mood, anxiety, stress or sleep quality and no significant effect of probiotic over placebo on subjective stress measures, or the HPA response to the SECPT. Visuospatial memory performance, attention switching, rapid visual information processing, emotion recognition and associated EEG measures did not show improvement over placebo. No significant anti-inflammatory effects were seen as assessed by basal and stimulated cytokine levels. Conclusions: L. rhamnosus was not superior to placebo in modifying stress-related measures, HPA response, inflammation or cognitive performance in healthy male participants. These findings highlight the challenges associated with moving promising preclinical studies, conducted in an anxious mouse strain, to healthy human participants. Future interventional studies investigating the effect of this psychobiotic in populations with stress-related disorders are required.
Resumo:
Determinar la validez concurrente del Sistema de Observación de Tiempo de Instrucción de Condición Física (SOFIT) a través de acelerometría, como método para medir los niveles de actividad física (AF) de los escolares de 1º a 9º durante la clase de educación física en tres colegios públicos de Bogotá, Colombia. Estudio transversal entre Octubre de 2014 y Marzo de 2015. La medición se realizó en tres colegios públicos de Bogotá. Participaron 48 estudiantes (25 niñas; 23 niños), entre 5 y 17 años, seleccionados de acuerdo al protocolo de SOFIT. El resultado se categoriza en porcentaje de tiempo en comportamiento sedentario, AF moderada, AF vigorosa, y AF moderada a vigorosa. Se validó utilizando como patrón de oro la acelerometría en las mismas categorías. Se realizó diferencia de medias, regresión lineal y modelo de efectos fijos. La correlación entre SOFIT y acelerometría fue buena para AF moderada (rho=,958; p=0,000), AF vigorosa (rho=,937; p=0,000) y AF de moderada a vigorosa (rho=0,962; p=0,000). Al igual que utilizando un modelo de efectos fijos, AF moderada (β1=0,92; p=0,00), vigorosa (β1=0,94; p=0,00) y AF de moderada a vigorosa (β1=0,95; p=0,00), mostrando ausencia de diferencias significativas entre los dos métodos para la medición de los niveles de AF. El comportamiento sedentario correlacionó positivamente en Spearman (rho=,0965; p=0,000), El sistema SOFIT demostró ser válido para medir niveles de AF en clases de educación física, tras buena correlación y concordancia con acelerometría. SOFIT es un instrumento de fácil acceso y de bajo costo para la medición de la AF durante las clases de educación física en el contexto escolar y se recomienda su uso en futuros estudios.