870 resultados para acetyl-CoA carboxylase
Resumo:
A variety of N-acetyl-o-aryl-1,2-didehydroethylamines were synthesized by direct reduction-acetylation of beta-aryl-nitroolefins and assayed as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the first time. Compound 7a exhibited a TI v
Resumo:
PCR扩增了苜蓿根瘤菌乙酰辅酶A合成酶编码基因 (acsA1) ,克隆到连接 -非依赖型载体pET30LIC ;在E .coliBL2 1(DE3)pLysS中得到了有效表达 ,表达需IPTG的诱导 ,诱导 3h达到酶活高峰 .采用His·Bind柱层析对ACS进行了纯化 ,纯化的酶蛋白经SDS-PAGE呈单一浓带 ,分子量约 72 0 0 0 ,具较高的酶活 ,是无细胞提取液的 12 .7倍 .酶动力学分析显示 ,Vmax、Km分别为 (4 13.6± 11.7)mmolL-1和 (5 .8± 0 .6 )mmolL-1.图 4表 2参 8
Resumo:
A facile and efficient one-pot synthesis of substituted cyclophosphamidic chlorides and their analogues has been developed from readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro4H-pyrans.
Resumo:
The title compound, C13H11ClF3NO2, adopts a Z conformation. Halogen center dot center dot center dot oxygen interactions [Cl center dot center dot center dot O = 2.967 (3) angstrom] in the crystal packing lead to the formation of a dimer joined by two Cl center dot center dot center dot O bonds.
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(1H)-ones is developed via the Vilsmeier-Haack reaction of readily available 1-acetyl,1-carbamoyl cyclopropanes, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(IH)-ones was developed via Vilsmeier-Haack reactions of readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
The ion-molecule reactions of disubstituted benzenes under chemical ionization conditions with acetyl chloride as reagent gas were examined, and the fragmentation reactions of the adduct ions (mostly proton and acetyl ion adducts) were studied by collision-induced dissociation. Electron-releasing substituents favored the adduct reactions, and electron-withdrawing groups did not. The position and properties of substituting groups had an effect on the relative abundances of the adduct ions. Several examples of the ortho effect were observed. The fragmentation reaction of the adduct ions formed by ortho-benzenediamine with the acetyl ion was similar to the reductive alkylation reaction of amines in the condensed phase. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
N-acetyl-L-glutamic acid, crystallizes in the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters a = 4.747(3), b = 12.852(7), c = 13.906(7) Å, V = 848.5(8) Å3, Z = 4, density (calculated) = 1.481 mg/m3, linear absorption coefficient 0.127 mm−1. The crystal structure determination was carried out with MoKalpha X-ray data measured with liquid nitrogen cooling at 100(2) K temperature. In the final refinement cycle the data/restraints/parameter ratios were 1,691/0/131; goodness-of-fit on F(2) = 1.122. Final R indices for [I > 2sigma(I)] were R1 = 0.0430, wR2 = 0.0878 and R indices (all data) R1 = 0.0473, wR2 = 0.0894. The largest electron density difference peak and hole were 0.207 and −0.154 eÅ(−3). Details of the molecular geometry are discussed and compared with a model DFT structure calculated using Gaussian 98.
Resumo:
The intracellular distribution of aminopeptidase-I in the intestinal and digestive cells of Mytilus edulishas been shown to be the same as the lysosomal marker enzymes β-glucuronidase and N-acetyl-β-hexosaminidase. Activity for these enzymes was also associated with the intestinal apical cytoplasm and microvillous border where there was pronounced staining for aminopeptidase-I. Experimental alterations of salinity induced changes in both microdensitometrically and spectrophotometrically determined aminopeptidase-I activity, as an increase with raised salinity and a decrease with lowered salinity. Lysosomal hexosaminidase showed similar changes in activity with altered salinity. Cytochemically determined lysosomal stability was also responsive to salinity changes, indicative of alterations in lysosomal functional capability. The lysosomal distribution of aminopeptidase-I is discussed in terms of the function of lysosomes in intracellular protein turnover, their high concentrations of free amino acids, and the possible roles which these might play in intracellular osmoregulation in response to salinity change.