994 resultados para Sign Function
Resumo:
Maternally inherited diabetes and deafness (MIDD) is an autosomal dominant inherited syndrome caused by the mitochondrial DNA (mtDNA) nucleotide mutation A3243G. It affects various organs including the eye with external ophthalmoparesis, ptosis, and bilateral macular pattern dystrophy.1, 2 The prevalence of retinal involvement in MIDD is high, with 50% to 85% of patients exhibiting some macular changes.1 Those changes, however, can vary between patients and within families dramatically based on the percentage of retinal mtDNA mutations, making it difficult to give predictions on an individual’s visual prognosis...
Resumo:
DOUBLE-STRANDED RNA BIN DIN G (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets. Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen 2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNA s. © 2012 Landes Bioscience.
Resumo:
The complete nucleotide sequence of genome segment S4 of rice ragged stunt oryzavirus (RRSV, Thai-isolate) was determined. The 3823 bp sequence contains two large open reading frames (ORFs). ORF1, spanning nucleotides 12 to 3776, is capable of encoding a protein of M(r) 141,380 (P4a). The P4a amino acid sequence predicted from the nucleotide sequence contains sequence motifs conserved in RNA-dependent RNA polymerases (RDRPs). When compared for evolutionary relationships with RDRPs of other reoviruses using the amino acid sequences around the conserved GDD motif, P4a was shown to be more related to Nilaparvata lugens reovirus and reovirus serotype 3 than to rice dwarf phytoreovirus, bovine rotavirus or bluetongue virus. The ORF2, spanning nucleotides 491 to 1468, is out of frame with ORF1 and is capable of encoding a protein of 36, 920 (P4b). Coupled in vitro transcription-translation from cloned ORF2 in wheat germ extract confirmed the existence of ORF2 but in vivo production and possible function of P4b is yet to be determined.
Resumo:
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.
Resumo:
G protein-coupled receptors (GPCRs) are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosensory GPCRs have not been systematically studied in the heart. We performed RT-qPCR taste receptor screens in rodent and human heart tissues that revealed discrete subsets of type 2 taste receptors (TAS2/Tas2) as well as Tas1r1 and Tas1r3 (comprising the umami receptor) are expressed. These taste GPCRs are present in cultured cardiac myocytes and fibroblasts, and are enriched in myocytes, which we corroborated using in situ hybridization. Tas1r1 gene-targeted mice (Tas1r1Cre/Rosa26tdRFP) strikingly recapitulated these data. In vivo taste receptor expression levels were developmentally regulated in the postnatal period. Intriguingly, several Tas2rs were upregulated in cultured rat myocytes and in mouse heart in vivo following starvation. The discovery of taste GPCRs in the heart opens an exciting new field of cardiac research. We predict that these taste receptors may function as nutrient sensors in the heart.
Resumo:
A pilot experiment was performed using the WOMBAT powder diffraction instrument at ANSTO in which the first neutron diffraction peak (Q0) was measured for D2O flowing in a 2 mm internal diameter aluminium tube. Measurements of Q0 were made at -9, 4.3, 6.9, 12, 18.2 and 21.5 °C. The D2O was circulated using a siphon with water in the lower reservoir returned to the upper reservoir using a small pump. This enabled stable flow to be maintained for several hours. For example, if the pump flow increased slightly, the upper reservoir level rose, increasing the siphon flow until it matched the return flow. A neutron wavelength of 2.4 Å was used and data integrated over 60 minutes for each temperature. A jet of nitrogen from a liquid N2 Dewar was directed over the aluminium tube to vary water temperature. After collection of the data, the d spacing of the aluminium peaks was used to calculate the temperature of the aluminium within the neutron beam and therefore was considered to be an accurate measure of water temperature within the beam. Sigmaplot version 12.3 was used to fit a Weibull five parameter peak fit to the first neutron diffraction peak. The values of Q0 obtained in this experiment showed an increase with temperature consistent with data in the literature [1] but were consistently higher than published values for bulk D20. For example at 21.5 °C we obtained a value of 2.008 Å-1 for Q0 compared to a literature value of 1.988 Å-1 for bulk D2O at 20 °C, a difference of 1%. Further experiments are required to see if this difference is real or artifactual.
Resumo:
X-ray diffraction structure functions for water flowing in a 1.5 mm diameter siphon in the temperature range 4 – 63 °C were obtained using a 20 keV beam at the Australian Synchrotron. These functions were compared with structure functions obtained at the Advanced Light Source for a 0.5 mm thick sample of water in the temperature range 1 – 77 °C irradiated with an 11 keV beam. The two sets of structure functions are similar, but there are subtle differences in the shape and relative position of the two functions suggesting a possible differences between the structure of bulk and siphon water. In addition, the first structural peak (Q0) for water in a siphon, showed evidence of a step-wise increase in Q0 with increasing temperature rather than a smoothly varying increase. More experiments are required to investigate this apparent difference.
Resumo:
RC4-Based Hash Function is a new proposed hash function based on RC4 stream cipher for ultra low power devices. In this paper, we analyse the security of the function against collision attack. It is shown that the attacker can find collision and multi-collision messages with complexity only 6 compress function operations and negligible memory with time complexity 2 13. In addition, we show the hashing algorithm can be distinguishable from a truly random sequence with probability close to one.
Resumo:
In this chapter, we discuss four related areas of cryptology, namely, authentication, hashing, message authentication codes (MACs), and digital signatures. These topics represent active and growing research topics in cryptology. Space limitations allow us to concentrate only on the essential aspects of each topic. The bibliography is intended to supplement our survey. We have selected those items which providean overview of the current state of knowledge in the above areas. Authentication deals with the problem of providing assurance to a receiver that a communicated message originates from a particular transmitter, and that the received message has the same content as the transmitted message. A typical authentication scenario occurs in computer networks, where the identity of two communicating entities is established by means of authentication. Hashing is concerned with the problem of providing a relatively short digest–fingerprint of a much longer message or electronic document. A hashing function must satisfy (at least) the critical requirement that the fingerprints of two distinct messages are distinct. Hashing functions have numerous applications in cryptology. They are often used as primitives to construct other cryptographic functions. MACs are symmetric key primitives that provide message integrity against active spoofing by appending a cryptographic checksum to a message that is verifiable only by the intended recipient of the message. Message authentication is one of the most important ways of ensuring the integrity of information that is transferred by electronic means. Digital signatures provide electronic equivalents of handwritten signatures. They preserve the essential features of handwritten signatures and can be used to sign electronic documents. Digital signatures can potentially be used in legal contexts.
Resumo:
The cryptographic hash function literature has numerous hash function definitions and hash function requirements, and many of them disagree. This survey talks about the various definitions, and takes steps towards cleaning up the literature by explaining how the field has evolved and accurately depicting the research aims people have today.
Resumo:
In the current market, extensive software development is taking place and the software industry is thriving. Major software giants have stated source code theft as a major threat to revenues. By inserting an identity-establishing watermark in the source code, a company can prove it's ownership over the source code. In this paper, we propose a watermarking scheme for C/C++ source codes by exploiting the language restrictions. If a function calls another function, the latter needs to be defined in the code before the former, unless one uses function pre-declarations. We embed the watermark in the code by imposing an ordering on the mutually independent functions by introducing bogus dependency. Removal of dependency by the attacker to erase the watermark requires extensive manual intervention thereby making the attack infeasible. The scheme is also secure against subtractive and additive attacks. Using our watermarking scheme, an n-bit watermark can be embedded in a program having n independent functions. The scheme is implemented on several sample codes and performance changes are analyzed.
Resumo:
A key derivation function (KDF) is a function that transforms secret non-uniformly random source material together with some public strings into one or more cryptographic keys. These cryptographic keys are used with a cryptographic algorithm for protecting electronic data during both transmission over insecure channels and storage. In this thesis, we propose a new method for constructing a generic stream cipher based key derivation function. We show that our proposed key derivation function based on stream ciphers is secure if the under-lying stream cipher is secure. We simulate instances of this stream cipher based key derivation function using three eStream nalist: Trivium, Sosemanuk and Rabbit. The simulation results show these stream cipher based key derivation functions offer efficiency advantages over the more commonly used key derivation functions based on block ciphers and hash functions.
Resumo:
This study aims to explain the entrepreneurial processes as developments of entrepreneurial networks. As a theoretical framework, this study adopts the theory of experimentally organized economy and competence blocs. As suggested by this theory, entrepreneurs select profitable innovations and commercialise them. Through logistic regressions on the subjective and objective dependent variables, we find that nascent firms’ various activities to network customers, innovators, investors, and employees are positively associated with the business emergence. This study identifies the roles of entrepreneurs and the other actors in the entrepreneurial processes.