991 resultados para SYMMETRIC SPACE-TIMES
Resumo:
The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
Although texts and wall paintings suggest that bees were kept in the Ancient Near East for the production of precious wax and honey, archaeological evidence for beekeeping has never been found. The Biblical term ""honey"" commonly was interpreted as the sweet product of fruits, such as dates and figs. The recent discovery of unfired clay cylinders similar to traditional hives still used in the Near East at the site of Tel Rehov in the Jordan valley in northern Israel suggests that a large-scale apiary was located inside the town, dating to the 10th-early 9th centuries B.C.E. This paper reports the discovery of remains of honeybee workers, drones, pupae, and larvae inside these hives. The exceptional preservation of these remains provides unequivocal identification of the clay cylinders as the most ancient beehives yet found. Morphometric analyses indicate that these bees differ from the local subspecies Apis mellifera syriaca and from all subspecies other than A. m. anatoliaca, which presently resides in parts of Turkey. This finding suggests either that the Western honeybee subspecies distribution has undergone rapid change during the last 3,000 years or that the ancient inhabitants of Tel Rehov imported bees superior to the local bees in terms of their milder temper and improved honey yield.
Resumo:
The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle`s cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.
Resumo:
This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.
Resumo:
This work discusses the determination of the breathing patterns in time sequence of images obtained from magnetic resonance (MR) and their use in the temporal registration of coronal and sagittal images. The registration is made without the use of any triggering information and any special gas to enhance the contrast. The temporal sequences of images are acquired in free breathing. The real movement of the lung has never been seen directly, as it is totally dependent on its surrounding muscles and collapses without them. The visualization of the lung in motion is an actual topic of research in medicine. The lung movement is not periodic and it is susceptible to variations in the degree of respiration. Compared to computerized tomography (CT), MR imaging involves longer acquisition times and it is preferable because it does not involve radiation. As coronal and sagittal sequences of images are orthogonal to each other, their intersection corresponds to a segment in the three-dimensional space. The registration is based on the analysis of this intersection segment. A time sequence of this intersection segment can be stacked, defining a two-dimension spatio-temporal (2DST) image. The algorithm proposed in this work can detect asynchronous movements of the internal lung structures and lung surrounding organs. It is assumed that the diaphragmatic movement is the principal movement and all the lung structures move almost synchronously. The synchronization is performed through a pattern named respiratory function. This pattern is obtained by processing a 2DST image. An interval Hough transform algorithm searches for synchronized movements with the respiratory function. A greedy active contour algorithm adjusts small discrepancies originated by asynchronous movements in the respiratory patterns. The output is a set of respiratory patterns. Finally, the composition of coronal and sagittal image pairs that are in the same breathing phase is realized by comparing of respiratory patterns originated from diaphragmatic and upper boundary surfaces. When available, the respiratory patterns associated to lung internal structures are also used. The results of the proposed method are compared with the pixel-by-pixel comparison method. The proposed method increases the number of registered pairs representing composed images and allows an easy check of the breathing phase. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this technical note we consider the mean-variance hedging problem of a jump diffusion continuous state space financial model with the re-balancing strategies for the hedging portfolio taken at discrete times, a situation that more closely reflects real market conditions. A direct expression based on some change of measures, not depending on any recursions, is derived for the optimal hedging strategy as well as for the ""fair hedging price"" considering any given payoff. For the case of a European call option these expressions can be evaluated in a closed form.
Resumo:
Captive breeding of peccaries is on the increase in neotropical countries. Few studies, however, have reported behavioural responses of wild animals under farmed conditions. Therefore, the aim of this study was to evaluate the effects of space allowance on the occurrence of social behaviour patterns on farmed collared peccary (Pecan tajacu). We observed three herds of collared peccaries each containing eight acquainted individuals. Using a 3 x 3 Latin square design, herds were allocated, in a random order, to one of the three experimental enclosures, each with a different size. 375, 750 and 1,500 m(2) of total available area, each with three wooden shelters. We recorded all the occurrences of selected positive and agonistic behavioural patterns that occurred 90 min before and during feeding Enclosure size had a significant effect on agonistic patterns of peccaries during feeding, in that more agonistic behaviour was observed in smaller spaces We also found that shelter usage increased as space decreased Differing space allowances, however, did not have an effect on the occurrence of positive interactions that were more frequent before compared to during feeding. We concluded that enclosure size had an effect on the expression of agonistic be and the use of shelters by collared peccaries Thus, animal welfare can be improved by adopting at least 187 5 m(2) per peccary. In addition, our study also confirmed the importance of shelter areas in collared peccary husbandry.
Resumo:
Time-domain reflectometry (TDR) is an important technique to obtain series of soil water content measurements in the field. Diode-segmented probes represent an improvement in TDR applicability, allowing measurements of the soil water content profile with a single probe. In this paper we explore an extensive soil water content dataset obtained by tensiometry and TDR from internal drainage experiments in two consecutive years in a tropical soil in Brazil. Comparisons between the variation patterns of the water content estimated by both methods exhibited evidences of deterioration of the TDR system during this two year period at field conditions. The results showed consistency in the variation pattern for the tensiometry data, whereas TDR estimates were inconsistent, with sensitivity decreasing over time. This suggests that difficulties may arise for the long-term use of this TDR system under tropical field conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to evaluate the average behavior, the genotype x environment (GxE), adaptability and stability of seven soybean cultivars at three sowing dates in Uberlandia-MG. The tests were conducted at Capim Branco Farm, belonging to the Federal University of Uberlandia. Sowing was held on october 29 (1st season), november 24 (2nd season) and december 17 (3rd season) 2007. The experimental design was a randomized, seven genotypes (UFUS Xavante, UFUS Riqueza, UFUS Guarani, UFUS Milionaria, Msoy 8001, Msoy 8411 and Msoy 8914) with three replications in each of three sowing dates. Means were compared by Tukey test at 5% probability. Analysis of adaptability and phenotypic stability of genotypes was performed using the Eberhart and Russell (1966), Lin and Binns (1988) modified by Carneiro (1998) and centroid (NASCIMENTO et al., 2009). For grain yield, the cultivar UFUS Xavante was classified as specific adaptability to environment and high stability. The other cultivars were classified as being of general adaptability. For oil content, the cultivars Msoy 8914 and UFUS Xavante behaved as high stability and was classified as having high adaptability. For the character content of protein, all cultivars behaved as wide adaptability and low stability.
Resumo:
This paper presents an analysis of dysfluencies in two oral tellings of a familiar children's story by a young boy with autism. Thurber & Tager-Flusberg (1993) postulate a lower degree of cognitive and communicative investment to explain a lower frequency of non-grammatical pauses observed in elicited narratives of children with autism in comparison to typically developing and intellectually disabled controls. we also found a very low frequency of non-grammatical pauses in our data, but indications of high engagement and cognitive and communicative investment. We point to a wider range of disfluencies as indicators of cognitive load, and show that the kind and location of dysfluencies produced may reveal which aspects of the narrative task are creating the greatest cognitive demand: here, mental state ascription, perspectivization, and adherence to story schema. This paper thus generates analytical options and hypotheses that can be explored further in a larger population of children with autism and typically developing controls.