975 resultados para SUPERSYMMETRIC POLYNOMIALS
Resumo:
A class of shape-invariant bound-state problems which represent two-level systems are introduced. It is shown that the coupled-channel Hamiltonians obtained correspond to the generalization of the Jaynes-Cummings Hamiltonian.
Resumo:
Exact reflection and transmission coefficients for supersymmetric shape-invariant potentials barriers are calculated by an analytical continuation of the asymptotic wavefunctions obtained via the introduction of new generalized ladder operators. The general form of the wavefunction is obtained by the use of the F(-infinity, +infinity)-matrix formalism of Froman and Froman which is related to the evolution of asymptotic wavefunction coefficients.
Resumo:
in this paper, we derive an explicit expression for the parameter sequences of a chain sequence in terms of the corresponding orthogonal polynomials and their associated polynomials. We use this to study the orthogonal polynomials K-n((lambda.,M,k)) associated with the probability measure dphi(lambda,M,k;x), which is the Gegenbauer measure of parameter lambda + 1 with two additional mass points at +/-k. When k = 1 we obtain information on the polynomials K-n((lambda.,M)) which are the symmetric Koornwinder polynomials. Monotonicity properties of the zeros of K-n((lambda,M,k)) in relation to M and k are also given. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The methodology based on the association of the variational method with supersymmetric quantum mechanics is used to evaluate the energy states of the confined hydrogen atom. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Let (a, b) subset of (0, infinity) and for any positive integer n, let S-n be the Chebyshev space in [a, b] defined by S-n:= span{x(-n/2+k),k= 0,...,n}. The unique (up to a constant factor) function tau(n) is an element of S-n, which satisfies the orthogonality relation S(a)(b)tau(n)(x)q(x) (x(b - x)(x - a))(-1/2) dx = 0 for any q is an element of Sn-1, is said to be the orthogonal Chebyshev S-n-polynomials. This paper is an attempt to exibit some interesting properties of the orthogonal Chebyshev S-n-polynomials and to demonstrate their importance to the problem of approximation by S-n-polynomials. A simple proof of a Jackson-type theorem is given and the Lagrange interpolation problem by functions from S-n is discussed. It is shown also that tau(n) obeys an extremal property in L-q, 1 less than or equal to q less than or equal to infinity. Natural analogues of some inequalities for algebraic polynomials, which we expect to hold for the S-n-pelynomials, are conjectured.
Resumo:
Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.
Resumo:
A systematic construction of super W algebras in terms of the WZNW model based on a super Lie algebra is presented. These are shown to be the symmetry structure of the super Toda models, which can be obtained from the WZNW theory by Hamiltonian reduction. A classification, according to the conformal spin defined by an improved energy momentum tensor, is discussed in general terms for all super Lie algebras whose simple roots are fermionic. A detailed discussion employing the Dirac bracket structure and an explicit construction of W algebras for the cases of OSP(1, 2), OSP(2, 2), OSP(3, 2) and D(2, 1\ alpha) are given. The N = 1 and N = 2 superconformal algebras are discussed in the pertinent cases.
Resumo:
A class of shape-invariant bound-state problems which represent transitions in a two-level system introduced earlier are generalized to include arbitrary energy splittings between the two levels as well as intensity-dependent interactions. We show that the coupled-channel Hamiltonians obtained correspond to the generalizations of the nonresonant and intensity-dependent Jaynes-Cummings Hamiltonians, widely used in quantized theories of lasers. In this general context, we determine the eigenstates, eigenvalues, the time evolution matrix and the population inversion matrix factor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
SZEGO and PARA-ORTHOGONAL POLYNOMIALS on THE REAL LINE: ZEROS and CANONICAL SPECTRAL TRANSFORMATIONS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that the wavefunctions 〈pq; λ|n〈, of the harmonic oscillator in the squeezed state representation, have the generalized Hermite polynomials as their natural orthogonal polynomials. These wavefunctions lead to generalized Poisson Distribution Pn(pq;λ), which satisfy an interesting pseudo-diffusion equation: ∂Pnp,q;λ) ∂λ= 1 4 [ ∂2 ∂p2-( 1 λ2) ∂2 ∂q2]P2(p,q;λ), in which the squeeze parameter λ plays the role of time. Th entropies Sn(λ) have minima at the unsqueezed states (λ=1), which means that squeezing or stretching decreases the correlation between momentum p and position q. © 1992.
Resumo:
In the usual supersymmetric quantum mechanics, the supercharges change the eigenfunction from the bosonic to fermionic sector and conversely. The classical correspondent of this transformation is shown to be the addition of a total time derivative of a purely imaginary function to the Lagrangian function of the system.
Resumo:
We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan β, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. ©1999 The American Physical Society.