858 resultados para Robust autonomy
Resumo:
The autonomous capabilities in collaborative unmanned aircraft systems are growing rapidly. Without appropriate transparency, the effectiveness of the future multiple Unmanned Aerial Vehicle (UAV) management paradigm will be significantly limited by the human agent’s cognitive abilities; where the operator’s CognitiveWorkload (CW) and Situation Awareness (SA) will present as disproportionate. This proposes a challenge in evaluating the impact of robot autonomous capability feedback, allowing the human agent greater transparency into the robot’s autonomous status - in a supervisory role. This paper presents; the motivation, aim, related works, experiment theory, methodology, results and discussions, and the future work succeeding this preliminary study. The results in this paper illustrates that, with a greater transparency of a UAV’s autonomous capability, an overall improvement in the subjects’ cognitive abilities was evident, that is, with a confidence of 95%, the test subjects’ mean CW was demonstrated to have a statistically significant reduction, while their mean SA was demonstrated to have a significant increase.
Resumo:
1. In conservation decision-making, we operate within the confines of limited funding. Furthermore, we often assume particular relationships between management impact and our investment in management. The structure of these relationships, however, is rarely known with certainty - there is model uncertainty. We investigate how these two fundamentally limiting factors in conservation management, money and knowledge, impact optimal decision-making. 2. We use information-gap decision theory to find strategies for maximizing the number of extant subpopulations of a threatened species that are most immune to failure due to model uncertainty. We thus find a robust framework for exploring optimal decision-making. 3. The performance of every strategy decreases as model uncertainty increases. 4. The strategy most robust to model uncertainty depends not only on what performance is perceived to be acceptable but also on available funding and the time horizon over which extinction is considered. 5. Synthesis and applications. We investigate the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that subpopulation triage can be a natural consequence of robust decision-making. We highlight the need for managers to consider triage not as merely giving up, but as a tool for ensuring species persistence in light of the urgency of most conservation requirements, uncertainty and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park. © 2008 The Authors.
Resumo:
Decision-making for conservation is conducted within the margins of limited funding. Furthermore, to allocate these scarce resources we make assumptions about the relationship between management impact and expenditure. The structure of these relationships, however, is rarely known with certainty. We present a summary of work investigating the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that achieving robustness in conservation decisions can require a triage approach, and emphasize the need for managers to consider triage not as surrendering but as rational decision making to ensure species persistence in light of the urgency of the conservation problems, uncertainty, and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park, Indonesia. To conserve our environment, conservation managers must make decisions in the face of substantial uncertainty. Further, they must deal with the fact that limitations in budgets and temporal constraints have led to a lack of knowledge on the systems we are trying to preserve and on the benefits of the actions we have available (Balmford & Cowling 2006). Given this paucity of decision-informing data there is a considerable need to assess the impact of uncertainty on the benefit of management options (Regan et al. 2005). Although models of management impact can improve decision making (e.g.Tenhumberg et al. 2004), they typically rely on assumptions around which there is substantial uncertainty. Ignoring this 'model uncertainty', can lead to inferior decision-making (Regan et al. 2005), and potentially, the loss of the species we are trying to protect. Current methods used in ecology allow model uncertainty to be incorporated into the model selection process (Burnham & Anderson 2002; Link & Barker 2006), but do not enable decision-makers to assess how this uncertainty would change a decision. This is the basis of information-gap decision theory (info-gap); finding strategies most robust to model uncertainty (Ben-Haim 2006). Info-gap has permitted conservation biology to make the leap from recognizing uncertainty to explicitly incorporating severe uncertainty into decision-making. In this paper we present a summary of McDonald-Madden et al (2008a) who use an info-gap framework to address the impact of uncertainty in the functional representations of biological systems on conservation decision-making. Furthermore, we highlight the importance of two key elements limiting conservation decision-making - funding and knowledge - and how they interact to influence the best management strategy for a threatened species. Copyright © ASCE 2011.
Resumo:
This constructivist theory-led case study explored how the term language learner autonomy (LLA) is interpreted and the appropriate pedagogy to foster LLA in the Vietnamese higher education context. Evidence through the exploration of the government policies and the cases of three EFL classes confirms the interpretation that learner autonomy and language acquisition are mutually supported. The study has proposed project work as a potential model while demonstrating the role of the teacher and the use of target language as mediators to enhance LLA in the local context. Findings of the study contribute a theoretical and pedagogical justification for encouraging LLA in Vietnam and other similar contexts.
Resumo:
Using cameras onboard a robot for detecting a coloured stationary target outdoors is a difficult task. Apart from the complexity of separating the target from the background scenery over different ranges, there are also the inconsistencies with direct and reflected illumination from the sun,clouds, moving and stationary objects. They can vary both the illumination on the target and its colour as perceived by the camera. In this paper, we analyse the effect of environment conditions, range to target, camera settings and image processing on the reported colours of various targets. The analysis indicates the colour space and camera configuration that provide the most consistent colour values over varying environment conditions and ranges. This information is used to develop a detection system that provides range and bearing to detected targets. The system is evaluated over various lighting conditions from bright sunlight, shadows and overcast days and demonstrates robust performance. The accuracy of the system is compared against a laser beacon detector with preliminary results indicating it to be a valuable asset for long-range coloured target detection.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper discusses a robust sensing system developed to find and trade the position of the hoist ropes of a dragline. Draglines are large `walking cranes' used in open-pit coal mining to remove the material covering the coal seam. The rope sensing system developed uses two time-of-flight laser scanners. The finding algorithm uses a novel data association and tracking strategy based on pairing rope data.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
The generation of solar thermal power is dependent upon the amount of sunlight exposure,as influenced by the day-night cycle and seasonal variations. In this paper, robust optimisation is applied to the design of a power block and turbine, which is generating 30 MWe from a concentrated solar resource of 560oC. The robust approach is important to attain a high average performance (minimum efficiency change) over the expected operating ranges of temperature, speed and mass flow. The final objective function combines the turbine performance and efficiency weighted by the off-design performance. The resulting robust optimisation methodology as presented in the paper gives further information that greatly aids in the design of non-classical power blocks through considering off-design conditions and resultant performance.
Resumo:
Place recognition has long been an incompletely solved problem in that all approaches involve significant compromises. Current methods address many but never all of the critical challenges of place recognition – viewpoint-invariance, condition-invariance and minimizing training requirements. Here we present an approach that adapts state-of-the-art object proposal techniques to identify potential landmarks within an image for place recognition. We use the astonishing power of convolutional neural network features to identify matching landmark proposals between images to perform place recognition over extreme appearance and viewpoint variations. Our system does not require any form of training, all components are generic enough to be used off-the-shelf. We present a range of challenging experiments in varied viewpoint and environmental conditions. We demonstrate superior performance to current state-of-the- art techniques. Furthermore, by building on existing and widely used recognition frameworks, this approach provides a highly compatible place recognition system with the potential for easy integration of other techniques such as object detection and semantic scene interpretation.
Resumo:
The provision of autonomy supportive environments that promote physical activity engagement have become popular in contemporary youth settings. However, questions remain about whether adolescent perceptions of their autonomy have implications for physical activity. The purpose of this investigation was to examine the association between adolescents’ self-reported physical activity and their perceived autonomy. Participants (n = 384 adolescents) aged between 12 and 15 years were recruited from six secondary schools in metropolitan Brisbane, Australia. Self-reported measures of physical activity and autonomy were obtained. Logistic regression with inverse probability weights were used to examine the association between autonomy and the odds of meeting youth physical activity guidelines. Autonomy (OR 0.61, 95% CI 0.49-0.76) and gender (OR 0.62, 95% CI 0.46-0.83) were negatively associated with meeting physical activity guidelines. However, the model explained only a small amount of the variation in whether youth in this sample met physical activity guidelines (R2 = 0.023). For every 1 unit decrease in autonomy (on an index from 1 to 5), participants were 1.64 times more likely to meet physical activity guidelines. The findings, which are at odds with several previous studies, suggest that interventions designed to facilitate youth physical activity should limit opportunities for youth to make independent decisions about their engagement. However, the small amount of variation explained by the predictors in the model is a caveat, and should be considered prior to applying such suggestions in practical settings. Future research should continue to examine a larger age range, longitudinal observational or intervention studies to examine assertions of causality, as well as objective measurement of physical activity.
Resumo:
Index tracking is an investment approach where the primary objective is to keep portfolio return as close as possible to a target index without purchasing all index components. The main purpose is to minimize the tracking error between the returns of the selected portfolio and a benchmark. In this paper, quadratic as well as linear models are presented for minimizing the tracking error. The uncertainty is considered in the input data using a tractable robust framework that controls the level of conservatism while maintaining linearity. The linearity of the proposed robust optimization models allows a simple implementation of an ordinary optimization software package to find the optimal robust solution. The proposed model of this paper employs Morgan Stanley Capital International Index as the target index and the results are reported for six national indices including Japan, the USA, the UK, Germany, Switzerland and France. The performance of the proposed models is evaluated using several financial criteria e.g. information ratio, market ratio, Sharpe ratio and Treynor ratio. The preliminary results demonstrate that the proposed model lowers the amount of tracking error while raising values of portfolio performance measures.
Resumo:
We present an empirical evaluation and comparison of two content extraction methods in HTML: absolute XPath expressions and relative XPath expressions. We argue that the relative XPath expressions, although not widely used, should be used in preference to absolute XPath expressions in extracting content from human-created Web documents. Evaluation of robustness covers four thousand queries executed on several hundred webpages. We show that in referencing parts of real world dynamic HTML documents, relative XPath expressions are on average significantly more robust than absolute XPath ones.
Resumo:
This chapter examines the law in relation to the doctrines of university autonomy and academic freedom, in the Australian context. It first considers some traditional misconceptions and surrounding these doctrines, which seem to have obscured the real nature of the relationship between universities and the state. It then examines some laws and legal instruments at an international, federal and State level which define and regulate these freedoms. It considers some contemporary controversies, to illustrate both the strengths and weaknesses surrounding how alleged infringements of academic freedom and independence have been managed. It concludes with a look at an important emerging challenge which has implications for how we might avoid and manage such controversies in the future.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
Some statistical procedures already available in literature are employed in developing the water quality index, WQI. The nature of complexity and interdependency that occur in physical and chemical processes of water could be easier explained if statistical approaches were applied to water quality indexing. The most popular statistical method used in developing WQI is the principal component analysis (PCA). In literature, the WQI development based on the classical PCA mostly used water quality data that have been transformed and normalized. Outliers may be considered in or eliminated from the analysis. However, the classical mean and sample covariance matrix used in classical PCA methodology is not reliable if the outliers exist in the data. Since the presence of outliers may affect the computation of the principal component, robust principal component analysis, RPCA should be used. Focusing in Langat River, the RPCA-WQI was introduced for the first time in this study to re-calculate the DOE-WQI. Results show that the RPCA-WQI is capable to capture similar distribution in the existing DOE-WQI.