886 resultados para ROBOTS
Resumo:
This dissertation studies the geometric static problem of under-constrained cable-driven parallel robots (CDPRs) supported by n cables, with n ≤ 6. The task consists of determining the overall robot configuration when a set of n variables is assigned. When variables relating to the platform posture are assigned, an inverse geometric static problem (IGP) must be solved; whereas, when cable lengths are given, a direct geometric static problem (DGP) must be considered. Both problems are challenging, as the robot continues to preserve some degrees of freedom even after n variables are assigned, with the final configuration determined by the applied forces. Hence, kinematics and statics are coupled and must be resolved simultaneously. In this dissertation, a general methodology is presented for modelling the aforementioned scenario with a set of algebraic equations. An elimination procedure is provided, aimed at solving the governing equations analytically and obtaining a least-degree univariate polynomial in the corresponding ideal for any value of n. Although an analytical procedure based on elimination is important from a mathematical point of view, providing an upper bound on the number of solutions in the complex field, it is not practical to compute these solutions as it would be very time-consuming. Thus, for the efficient computation of the solution set, a numerical procedure based on homotopy continuation is implemented. A continuation algorithm is also applied to find a set of robot parameters with the maximum number of real assembly modes for a given DGP. Finally, the end-effector pose depends on the applied load and may change due to external disturbances. An investigation into equilibrium stability is therefore performed.
Resumo:
In the past two decades the work of a growing portion of researchers in robotics focused on a particular group of machines, belonging to the family of parallel manipulators: the cable robots. Although these robots share several theoretical elements with the better known parallel robots, they still present completely (or partly) unsolved issues. In particular, the study of their kinematic, already a difficult subject for conventional parallel manipulators, is further complicated by the non-linear nature of cables, which can exert only efforts of pure traction. The work presented in this thesis therefore focuses on the study of the kinematics of these robots and on the development of numerical techniques able to address some of the problems related to it. Most of the work is focused on the development of an interval-analysis based procedure for the solution of the direct geometric problem of a generic cable manipulator. This technique, as well as allowing for a rapid solution of the problem, also guarantees the results obtained against rounding and elimination errors and can take into account any uncertainties in the model of the problem. The developed code has been tested with the help of a small manipulator whose realization is described in this dissertation together with the auxiliary work done during its design and simulation phases.
Resumo:
This thesis proposes a novel technology in the field of swarm robotics that allows a swarm of robots to sense a virtual environment through virtual sensors. Virtual sensing is a desirable and helpful technology in swarm robotics research activity, because it allows the researchers to efficiently and quickly perform experiments otherwise more expensive and time consuming, or even impossible. In particular, we envision two useful applications for virtual sensing technology. On the one hand, it is possible to prototype and foresee the effects of a new sensor on a robot swarm, before producing it. On the other hand, thanks to this technology it is possible to study the behaviour of robots operating in environments that are not easily reproducible inside a lab for safety reasons or just because physically infeasible. The use of virtual sensing technology for sensor prototyping aims to foresee the behaviour of the swarm enhanced with new or more powerful sensors, without producing the hardware. Sensor prototyping can be used to tune a new sensor or perform performance comparison tests between alternative types of sensors. This kind of prototyping experiments can be performed through the presented tool, that allows to rapidly develop and test software virtual sensors of different typologies and quality, emulating the behaviour of several hardware real sensors. By investigating on which sensors is better to invest, a researcher can minimize the sensors’ production cost while achieving a given swarm performance. Through augmented reality, it is possible to test the performance of the swarm in a desired virtual environment that cannot be set into the lab for physical, logistic or economical reasons. The virtual environment is sensed by the robots through properly designed virtual sensors. Virtual sensing technology allows a researcher to quickly carry out real robots experiment in challenging scenarios without all the required hardware and environment.
Resumo:
Localization is information of fundamental importance to carry out various tasks in the mobile robotic area. The exact degree of precision required in the localization depends on the nature of the task. The GPS provides global position estimation but is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras are commonly used for position estimation, but these require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of vision. Currently, Wireless Networks (WN) are widely available in indoor environments and can allow efficient global localization that requires relatively low computing resources. However, the inherent instability in the wireless signal prevents it from being used for very accurate position estimation. The growth in the number of Access Points (AP) increases the overlap signals areas and this could be a useful means of improving the precision of the localization. In this paper we evaluate the impact of the number of Access Points in mobile nodes localization using Artificial Neural Networks (ANN). We use three to eight APs as a source signal and show how the ANNs learn and generalize the data. Added to this, we evaluate the robustness of the ANNs and evaluate a heuristic to try to decrease the error in the localization. In order to validate our approach several ANNs topologies have been evaluated in experimental tests that were conducted with a mobile node in an indoor space.
Resumo:
Many rehabilitation robots use electric motors with gears. The backdrivability of geared drives is poor due to friction. While it is common practice to use velocity measurements to compensate for kinetic friction, breakaway friction usually cannot be compensated for without the use of an additional force sensor that directly measures the interaction force between the human and the robot. Therefore, in robots without force sensors, subjects must overcome a large breakaway torque to initiate user-driven movements, which are important for motor learning. In this technical note, a new methodology to compensate for both kinetic and breakaway friction is presented. The basic strategy is to take advantage of the fact that, for rehabilitation exercises, the direction of the desired motion is often known. By applying the new method to three implementation examples, including drives with gear reduction ratios 100-435, the peak breakaway torque could be reduced by 60-80%.
Resumo:
Early intervention and intensive therapy improve the outcome of neuromuscular rehabilitation. There are indications that where a patient is motivated and premeditates their movement, the recovery is more effective. Therefore, a strategy for patient-cooperative control of rehabilitation devices for upper extremities is proposed and evaluated. The strategy is based on the minimal intervention principle allowing an efficient exploitation of task space redundancies and resulting in user-driven movement trajectories. The patient's effort is taken into consideration by enabling the machine to comply with forces exerted by the user. The interaction is enhanced through a multimodal display and a virtually generated environment that includes haptic, visual and sound modalities.
Resumo:
The complexity in the execution of cooperative tasks is high due to the fact that a robot team requires movement coordination at the beginning of the mission and continuous coordination during the execution of the task. A variety of techniques have been proposed to give a solution to this problem assuming standard mobile robots. This work focuses on presenting the execution of a cooperative task by a modular robot team. The complexity of the task execution increases due to the fact that each robot is composed of modules which have to be coordinated in a proper way to successfully work. A combined tight and loose cooperation strategy is presented and a bar-pushing example is used as a cooperative task to show the performance of this type of system.
Resumo:
Motivated by the growing interest in unmanned aerial system's applications in indoor and outdoor settings and the standardisation of visual sensors as vehicle payload. This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. It will achieve a minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing-only visual servoing approach. We provide theoretical problem formulation, as well as results from real flight using small quadrotors
Resumo:
Las aleaciones metálicas que exhiben una propiedad conocida como efecto de memoria de forma, pertenecen a la clase de materiales inteligentes cuya aplicación más notable en el campo de la robótica se refleja en el uso de actuadores musculares artificiales, ó músculos inteligentes. Estos materiales tienen una estructura cristalina uniforme que cambia radicalmente en función de su temperatura de transición, causando su deformación. Se les denomina materiales inteligentes por la capacidad de recordar su configuración inicial después de recibir dicho estímulo térmico. Este artículo presenta la implementación de un actuador muscular inteligente aplicado en un micro-robot aéreo bio-inspirado tipo murciélago. Esto mamíferos voladores desarrollaron poderosos músculos que se extienden a lo largo de la estructura ósea de las alas, adquiriendo una asombrosa capacidad de maniobra gracias a la capacidad de cambiar la forma del ala durante el vuelo. Replicar este tipo de alas mórficas en un prototipo robótico requiere el análisis de nuevas tecnologías de actuación, abordando los problemas de modelado y control que garanticen la aplicabilidad de este actuador compuesto por fibras musculares de SMAs
Resumo:
New actuation technology in functional or "smart" materials has opened new horizons in robotics actuation systems. Materials such as piezo-electric fiber composites, electro-active polymers and shape memory alloys (SMA) are being investigated as promising alternatives to standard servomotor technology [52]. This paper focuses on the use of SMAs for building muscle-like actuators. SMAs are extremely cheap, easily available commercially and have the advantage of working at low voltages. The use of SMA provides a very interesting alternative to the mechanisms used by conventional actuators. SMAs allow to drastically reduce the size, weight and complexity of robotic systems. In fact, their large force-weight ratio, large life cycles, negligible volume, sensing capability and noise-free operation make possible the use of this technology for building a new class of actuation devices. Nonetheless, high power consumption and low bandwidth limit this technology for certain kind of applications. This presents a challenge that must be addressed from both materials and control perspectives in order to overcome these drawbacks. Here, the latter is tackled. It has been demonstrated that suitable control strategies and proper mechanical arrangements can dramatically improve on SMA performance, mostly in terms of actuation speed and limit cycles.
Resumo:
In this paper, a system that allows applying precision agriculture techniques is described. The application is based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this work is practical experimentation with an integrated tool. Contributions in different fields are also reported. Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust flight control based on the use of a control law that improves the maneuverability of the quadrotors has been designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task negotiations to final performance. These experiments also allowed testing control robustness under different weather conditions.
Resumo:
This paper proposes a novel design of a reconfigurable humanoid robot head, based on biological likeness of human being so that the humanoid robot could agreeably interact with people in various everyday tasks. The proposed humanoid head has a modular and adaptive structural design and is equipped with three main components: frame, neck motion system and omnidirectional stereovision system modules. The omnidirectional stereovision system module being the last module, a motivating contribution with regard to other computer vision systems implemented in former humanoids, it opens new research possibilities for achieving human-like behaviour. A proposal for a real-time catadioptric stereovision system is presented, including stereo geometry for rectifying the system configuration and depth estimation. The methodology for an initial approach for visual servoing tasks is divided into two phases, first related to the robust detection of moving objects, their depth estimation and position calculation, and second the development of attention-based control strategies. Perception capabilities provided allow the extraction of 3D information from a wide range of visions from uncontrolled dynamic environments, and work results are illustrated through a number of experiments.
Resumo:
La mayor parte de los entornos diseñados por el hombre presentan características geométricas específicas. En ellos es frecuente encontrar formas poligonales, rectangulares, circulares . . . con una serie de relaciones típicas entre distintos elementos del entorno. Introducir este tipo de conocimiento en el proceso de construcción de mapas de un robot móvil puede mejorar notablemente la calidad y la precisión de los mapas resultantes. También puede hacerlos más útiles de cara a un razonamiento de más alto nivel. Cuando la construcción de mapas se formula en un marco probabilístico Bayesiano, una especificación completa del problema requiere considerar cierta información a priori sobre el tipo de entorno. El conocimiento previo puede aplicarse de varias maneras, en esta tesis se presentan dos marcos diferentes: uno basado en el uso de primitivas geométricas y otro que emplea un método de representación cercano al espacio de las medidas brutas. Un enfoque basado en características geométricas supone implícitamente imponer un cierto modelo a priori para el entorno. En este sentido, el desarrollo de una solución al problema SLAM mediante la optimización de un grafo de características geométricas constituye un primer paso hacia nuevos métodos de construcción de mapas en entornos estructurados. En el primero de los dos marcos propuestos, el sistema deduce la información a priori a aplicar en cada caso en base a una extensa colección de posibles modelos geométricos genéricos, siguiendo un método de Maximización de la Esperanza para hallar la estructura y el mapa más probables. La representación de la estructura del entorno se basa en un enfoque jerárquico, con diferentes niveles de abstracción para los distintos elementos geométricos que puedan describirlo. Se llevaron a cabo diversos experimentos para mostrar la versatilidad y el buen funcionamiento del método propuesto. En el segundo marco, el usuario puede definir diferentes modelos de estructura para el entorno mediante grupos de restricciones y energías locales entre puntos vecinos de un conjunto de datos del mismo. El grupo de restricciones que se aplica a cada grupo de puntos depende de la topología, que es inferida por el propio sistema. De este modo, se pueden incorporar nuevos modelos genéricos de estructura para el entorno con gran flexibilidad y facilidad. Se realizaron distintos experimentos para demostrar la flexibilidad y los buenos resultados del enfoque propuesto. Abstract Most human designed environments present specific geometrical characteristics. In them, it is easy to find polygonal, rectangular and circular shapes, with a series of typical relations between different elements of the environment. Introducing this kind of knowledge in the mapping process of mobile robots can notably improve the quality and accuracy of the resulting maps. It can also make them more suitable for higher level reasoning applications. When mapping is formulated in a Bayesian probabilistic framework, a complete specification of the problem requires considering a prior for the environment. The prior over the structure of the environment can be applied in several ways; this dissertation presents two different frameworks, one using a feature based approach and another one employing a dense representation close to the measurements space. A feature based approach implicitly imposes a prior for the environment. In this sense, feature based graph SLAM was a first step towards a new mapping solution for structured scenarios. In the first framework, the prior is inferred by the system from a wide collection of feature based priors, following an Expectation-Maximization approach to obtain the most probable structure and the most probable map. The representation of the structure of the environment is based on a hierarchical model with different levels of abstraction for the geometrical elements describing it. Various experiments were conducted to show the versatility and the good performance of the proposed method. In the second framework, different priors can be defined by the user as sets of local constraints and energies for consecutive points in a range scan from a given environment. The set of constraints applied to each group of points depends on the topology, which is inferred by the system. This way, flexible and generic priors can be incorporated very easily. Several tests were carried out to demonstrate the flexibility and the good results of the proposed approach.
Resumo:
Los índices de desempeño son importantes herramientas para la planificación de movimientos y el diseño de robots manipuladores. En este trabajo se presenta una colección de algunos de los índices de desempeño que mayor interés han generado en la comunidad dedicada a la robótica. Se presentan índices de desempeño cinetostático, dinámico, de lìmites articulares, e índices definidos sobre el espacio de trabajo. Además, se realiza una revisión sobre las estrategias que se han propuesto para solventar los problemas que aparecen cuando las unidades de los elementos de la matriz Jacobiana no son homogéneas. Al final de este trabajo, proponemos una serie índices de desempeño globales que pueden resultar útiles en el diseño de robots manipuladores.
Resumo:
In this article, a method for the agreement of a set of robots on a common reference orientation based on a distributed consensus algorithm is described. It only needs that robots detect the relative positions of their neighbors and communicate with them. Two different consensus algorithms based on the exchange of information are proposed, tested and analyzed. Systematic experiments were carried out in simulation and with real robots in order to test the method. Experimental results show that the robots are able to agree on the reference orientation under certain conditions. Scalability with an increasing number of robots was tested successfully in simulation with up to 49 robots. Experiments with real robots succeeded proving that the proposed method works in reality.