919 resultados para REACTIVE MAGNETRON SPUTTERING


Relevância:

90.00% 90.00%

Publicador:

Resumo:

SbOx thin films are deposited by reactive dc-magnetron sputtering from all antimony metal target in Ar+O-2 with the relative O-2 content 7%. It is found that the as-deposited films call represent a two-component system comprising amorphous Sb and amorphous Sb2O3. The crystallization of Sb is responsible for the changes of optical properties of the films. The results of the static, test show that the SbOx thin films have good writing sensitivity for blue laser beams and the recording marks are very clear and circular. High reflectivity contrast of about 41% is obtained at a writing power 6 mW and writing pulse width 300 ns. In addition, the films show a good stability after reading 10000 times.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NiOx thin films were deposited by reactive DC-magnetron sputtering from a nickel metal target in Ar + O-2 with the relative O-2 content of 5%. Thermal annealing effects on optical properties and surface morphology of NiOx, films were investigated by X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscope and optical measurement. The results showed that the changes in optical properties and surface morphology depended on the temperature. The surface morphology of the films changed obviously as the annealing temperature increased due to the reaction NiOx -> NiO + O-2 releasing O-2. The surface morphology change was responsible for the variation of the optical properties of the films. The optical contrast between the as-deposited films and 400 degrees C annealed films was about 52%. In addition, the relationship of the optical energy band gap with the variation of annealing temperature was studied. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

利用直流磁控反应溅射技术制备了氧气和氩气的分压比为5:100的NiOx薄膜。利用X射线衍射仪(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和光谱仪研究了热处理对薄膜的微观结构和光学性质的影响, 并对沉积态薄膜的粉末进行了热分析。沉积态的NiOx薄膜在262 ℃时开始分解, 导致NiOx薄膜的透过率增加和反射率降低。X射线衍射和示差扫描量热曲线(DSC)分析表明, 在热处理过程中并无物相的变化, 光学性质的变化是由于NiOx薄膜热分解引起薄膜表面形貌发生变化而引起的。通过Kissinger公式计算出

Relevância:

90.00% 90.00%

Publicador:

Resumo:

利用直流磁控溅射法在不同氧氩分压比条件下制备了BiOx薄膜。通过对薄膜在蓝光作用前后的反射率对比度变化的研究发现,氧氩分压比为50%时制备的薄膜具有最佳的光学对比度。利用X射线衍射仪(XRD)、X光电子能谱(XPS)和光谱仪研究了薄膜热处理前后的结构和光谱性质的变化。研究结果表明薄膜光学性质变化主要由薄膜中氧化铋的相变引起。蓝光静态测试结果显示氧氩分压比为50%条件下制备的BiOx薄膜具有很好好的记录敏感度,在11mW的记录功率和800ns的记录脉宽条件下,得到了52%的反射率对比度。此外,BiOx薄膜表现出了非常好的读出稳定性。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Highly c-axis oriented ZnO films have been deposited at room temperature with high rates (∼50 nm·min -1) using an innovative remote plasma sputtering configuration, which allows independent control of the plasma density and the sputtering ion energy. The ZnO films deposited possess excellent crystallographic orientation, high resistivity (>10 9 Ω·m), and exhibit very low surface roughness. The ability to increase the sputtering ion energy without causing unwanted Ar + bombardment onto the substrate has been shown to be crucial for the growth of films with excellent c-axis orientation without the need of substrate heating. In addition, the elimination of the Ar + bombardment has facilitated the growth of films with very low defect density and hence very low intrinsic stress (100 MPa for 3 μm-thick films). This is over an order of magnitude lower than films grown with a standard magnetron sputtering system. © 2012 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phase transition between thermodynamically stable hexagonal wurtzite (h-WZ) gallium nitride (GaN) and metastable cubic zinc-blende (c-ZB) GaN during growth by radio-frequency planar magnetron sputtering is studied. GaN films grown on substrates with lower mismatches tend to have a h-WZ structure, but when grown on substrates with higher mismatches, a c-ZB structure is preferred. GaN films grown under high nitrogen pressure also tend to have a h-WZ structure, whereas a c-ZB structure is preferred when grown under low nitrogen pressure. In addition, low target-power growth not only helps to improve hexagonal GaN (h-GaN) crystalline quality at high nitrogen pressure on low-mismatch substrates, but also enhances cubic GaN (c-GaN) quality at low nitrogen pressure on high-mismatch substrates. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mn-doped Si films were prepared on Si(001) substrates by magnetron cosputtering and post-annealing process. The structural, morphological and magnetic properties of the films have been investigated. X-ray diffraction results show that the as-prepared film is amorphous. By annealing at 800 degrees C, however, the film is crystallized. There is no secondary phase found except Si in the two films. Chemical mapping shows that no segregation of the Mn atoms appears in the annealed film. Atomic force microscopy images of the films indicate that the annealed film has a granular feature that covers uniformly the film surface while there is no such kind of characteristic in the as-prepared film. The field dependence of magnetization was measured using an alternating gradient magnetometer, and it has been indicated that the annealed film shows room-temperature ferromagnetism. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have grown MnxGe1-x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07 X 10(19) cm(-3) while the MnxGe1-x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ta/NiO/NiFe/Ta multilayers, utilizing Ta as buffer layer, were prepared by rf reactive and de magnetron sputtering. The exchange coupling field between NiO and NiFe reached a maximum value of 9.6x10(3) A/m at a NiO film thickness of 50 nm. The composition and chemical states at interface region of Ta/NiO/Ta were studied by using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there is an "intermixing layer" at the Ta/NiO land NiO/Ta) interface due to a thermodynamically favorable reaction 2Ta + 5NiO = 5Ni + Ta2O5. This interface reaction has a great effect on exchange coupling. The thickness of Ni+NiO estimated by XPS depth. profiles is about 8-10 nm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si(100) and Si(lll) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1 degrees, while the minimum is 0.353 degrees. This result is better than the minimum FWHM (about 2 degrees) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(lll).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a radio frequency magnetron sputtering method for producing TiO2 shell coatings directly on the surface of ZnO nanorod arrays. ZnO nanorod arrays were firstly fabricated on transparent conducting oxide substrates by a hydrothermal route, and subsequently decorated with TiO2 by a plasma sputtering deposition process. The core/shell nanorods have single-crystal ZnO cores and anatase TiO2 shells. The shells are homogeneously coated onto the whole ZnO nanorods without thickness change. This approach enables us to tailor the thickness of the TiO2 shell for desired photovoltaic applications on a one-nanometer scale. The function of the TiO2 shell as a blocking layer for increasing charge separation and suppression of the surface recombination was tested in dye-sensitized solar cells. The enhanced photocurrent and open-circuit voltage gave rise to increased photovoltaic efficiency and decreased dark current, indicating successful functioning of the TiO2 shell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing interest in the interaction of light with electricity and electronically active materials made the materials and techniques for producing semitransparent electrically conducting films particularly attractive. Transparent conductors have found major applications in a number of electronic and optoelectronic devices including resistors, transparent heating elements, antistatic and electromagnetic shield coatings, transparent electrode for solar cells, antireflection coatings, heat reflecting mirrors in glass windows and many other. Tin doped indium oxide (indium tin oxide or ITO) is one of the most commonly used transparent conducting oxides. At present and likely well into the future this material offers best available performance in terms of conductivity and transmittivity combined with excellent environmental stability, reproducibility and good surface morphology. Although partial transparency, with a reduction in conductivity, can be obtained for very thin metallic films, high transparency and simultaneously high conductivity cannot be attained in intrinsic stoichiometric materials. The only way this can be achieved is by creating electron degeneracy in a wide bandgap (Eg > 3eV or more for visible radiation) material by controllably introducing non-stoichiometry and/or appropriate dopants. These conditions can be conveniently met for ITO as well as a number of other materials like Zinc oxide, Cadmium oxide etc. ITO shows interesting and technologically important combination of properties viz high luminous transmittance, high IR reflectance, good electrical conductivity, excellent substrate adherence and chemical inertness. ITO is a key part of solar cells, window coatings, energy efficient buildings, and flat panel displays. In solar cells, ITO can be the transparent, conducting top layer that lets light into the cell to shine the junction and lets electricity flow out. Improving the ITO layer can help improve the solar cell efficiency. A transparent ii conducting oxide is a material with high transparency in a derived part of the spectrum and high electrical conductivity. Beyond these key properties of transparent conducting oxides (TCOs), ITO has a number of other key characteristics. The structure of ITO can be amorphous, crystalline, or mixed, depending on the deposition temperature and atmosphere. The electro-optical properties are a function of the crystallinity of the material. In general, ITO deposited at room temperature is amorphous, and ITO deposited at higher temperatures is crystalline. Depositing at high temperatures is more expensive than at room temperature, and this method may not be compatible with the underlying devices. The main objective of this thesis work is to optimise the growth conditions of Indium tin oxide thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The films are also deposited on to flexible substrates by employing bias sputtering technique. The films thus grown were characterised using different tools. A powder x-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UVVIS- NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using vander Pauw four probe technique. The plasma generated during the sputtering of the ITO target was analysed using Langmuir probe and optical emission spectral studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ZnGa2O4:Dy3+ phosphor thin films were deposited on quartz substrates by radio frequency rf magnetron sputtering and the effect of substrate temperature on its structural and luminescent properties was investigated. Polycrystalline film could be deposited even at room temperature. The crystalline behavior, Zn/Ga ratio, and surface morphology of the films were found to be highly sensitive to substrate temperature. Under UV illumination, the as-deposited films at and above 300°C gave white luminescence even without any postdeposition treatments. The photoluminescent PL emission can be attributed to the combined effect of multicolor emissions from the single luminescence center Dy3+ via host-sensitization. Maximum PL emission intensity was observed for the film deposited at 600°C, and the CIE chromaticity coordinates of the emission were determined to be x,y = 0.34, 0.31 .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this thesis work is to optimize the growth conditions for obtaining crystalline and conducting Lao.5Sro.5Co03 (LSCO) and Lao.5Sro.5Coo.5.5Nio.5O3 (LSCNO) thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The thin films were used as electrodes for the fabrication of ferroelectric capacitors using BaO.7SrO.3 Ti03 (BST) and PbZro.52 Tio.4803 (PZT). The structural and transport properties of the La1_xSrxCo03 and Lao.5Sro.5Co1_xNix03 are also investigated. The characterization of the bulk and the thin films were performed using different tools. A powder X-ray diffractometer was used to analyze the crystalline nature of the material. The transport properties were investigated by measuring the temperature dependence of resistivity using a four probe technique. The magnetoresistance and thermoelectric power were also used to investigate the transport properties. Atomic force microscope was used to study the surface morphology and thin film roughness. The ferroelectric properties of the capacitors were investigated using RT66A ferroelectric tester.