986 resultados para QUANTIZED WEYL ALGEBRA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.
Resumo:
We use the Weyl-van der Waerden spinor technique to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles.
Resumo:
We construct higher-spin N = 1 superalgebras as extensions of the super-Virasoro algebra containing generators for all spins s ≥ 3/2. We find two distinct classical (Poisson) algebras on the phase superspace. Our results indicate that only one of them can be consistently quantized.
Resumo:
We show that by using second-order differential operators as a realization of the so(2,1) Lie algebra, we can extend the class of quasi-exactly-solvable potentials with dynamical symmetries. As an example, we dynamically generate a potential of tenth power, which has been treated in the literature using other approaches, and discuss its relation with other potentials of lowest orders. The question of solvability is also studied. © 1991 The American Physical Society.
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.
Resumo:
Usually we observe that Bio-physical systems or Bio-chemical systems are many a time based on nanoscale phenomenon in different host environments, which involve many particles can often not be solved explicitly. Instead a physicist, biologist or a chemist has to rely either on approximate or numerical methods. For a certain type of systems, called integrable in nature, there exist particular mathematical structures and symmetries which facilitate the exact and explicit description. Most integrable systems, we come across are low-dimensional, for instance, a one-dimensional chain of coupled atoms in DNA molecular system with a particular direction or exist as a vector in the environment. This theoretical research paper aims at bringing one of the pioneering ‘Reaction-Diffusion’ aspects of the DNA-plasma material system based on an integrable lattice model approach utilizing quantized functional algebras, to disseminate the new developments, initiate novel computational and design paradigms.
Resumo:
Topics include: Free groups and presentations; Automorphism groups; Semidirect products; Classification of groups of small order; Normal series: composition, derived, and solvable series; Algebraic field extensions, splitting fields, algebraic closures; Separable algebraic extensions, the Primitive Element Theorem; Inseparability, purely inseparable extensions; Finite fields; Cyclotomic field extensions; Galois theory; Norm and trace maps of an algebraic field extension; Solvability by radicals, Galois' theorem; Transcendence degree; Rings and modules: Examples and basic properties; Exact sequences, split short exact sequences; Free modules, projective modules; Localization of (commutative) rings and modules; The prime spectrum of a ring; Nakayama's lemma; Basic category theory; The Hom functors; Tensor products, adjointness; Left/right Noetherian and Artinian modules; Composition series, the Jordan-Holder Theorem; Semisimple rings; The Artin-Wedderburn Theorem; The Density Theorem; The Jacobson radical; Artinian rings; von Neumann regular rings; Wedderburn's theorem on finite division rings; Group representations, character theory; Integral ring extensions; Burnside's paqb Theorem; Injective modules.
Resumo:
Topics include: Rings, ideals, algebraic sets and affine varieties, modules, localizations, tensor products, intersection multiplicities, primary decomposition, the Nullstellensatz
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Resumo:
We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras.
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.
Resumo:
The need for a convergence between semi-structured data management and Information Retrieval techniques is manifest to the scientific community. In order to fulfil this growing request, W3C has recently proposed XQuery Full Text, an IR-oriented extension of XQuery. However, the issue of query optimization requires the study of important properties like query equivalence and containment; to this aim, a formal representation of document and queries is needed. The goal of this thesis is to establish such formal background. We define a data model for XML documents and propose an algebra able to represent most of XQuery Full-Text expressions. We show how an XQuery Full-Text expression can be translated into an algebraic expression and how an algebraic expression can be optimized.