934 resultados para Processing speed


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Misperception of speed under low-contrast conditions has been identified as a possible contributor to motor vehicle crashes in fog. To test this hypothesis, we investigated the effects of reduced contrast on drivers’ perception and control of speed while driving under real-world conditions. Fourteen participants drove around a 2.85 km closed road course under three visual conditions: clear view and with two levels of reduced contrast created by diffusing filters on the windscreen and side windows. Three dependent measures were obtained, without view of the speedometer, on separate laps around the road course: verbal estimates of speed; adjustment of speed to instructed levels (25 to 70 km h-1); and estimation of minimum stopping distance. The results showed that drivers traveled more slowly under low-contrast conditions. Reduced contrast had little or no effect on either verbal judgments of speed or estimates of minimum stopping distance. Speed adjustments were significantly slower under low-contrast than clear conditions, indicating that, contrary to studies of object motion, drivers perceived themselves to be traveling faster under conditions of reduced contrast. Under real-world driving conditions, drivers’ ability to perceive and control their speed was not adversely affected by large variations in the contrast of their surroundings. These findings suggest that perceptions of self-motion and object motion involve neural processes that are differentially affected by variations in stimulus contrast as encountered in fog.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision-based SLAM is mostly a solved problem providing clear, sharp images can be obtained. However, in outdoor environments a number of factors such as rough terrain, high speeds and hardware limitations can result in these conditions not being met. High speed transit on rough terrain can lead to image blur and under/over exposure, problems that cannot easily be dealt with using low cost hardware. Furthermore, recently there has been a growth in interest in lifelong autonomy for robots, which brings with it the challenge in outdoor environments of dealing with a moving sun and lack of constant artificial lighting. In this paper, we present a lightweight approach to visual localization and visual odometry that addresses the challenges posed by perceptual change and low cost cameras. The approach combines low resolution imagery with the SLAM algorithm, RatSLAM. We test the system using a cheap consumer camera mounted on a small vehicle in a mixed urban and vegetated environment, at times ranging from dawn to dusk and in conditions ranging from sunny weather to rain. We first show that the system is able to provide reliable mapping and recall over the course of the day and incrementally incorporate new visual scenes from different times into an existing map. We then restrict the system to only learning visual scenes at one time of day, and show that the system is still able to localize and map at other times of day. The results demonstrate the viability of the approach in situations where image quality is poor and environmental or hardware factors preclude the use of visual features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promise of ‘big data’ has generated a significant deal of interest in the development of new approaches to research in the humanities and social sciences, as well as a range of important critical interventions which warn of an unquestioned rush to ‘big data’. Drawing on the experiences made in developing innovative ‘big data’ approaches to social media research, this paper examines some of the repercussions for the scholarly research and publication practices of those researchers who do pursue the path of ‘big data’–centric investigation in their work. As researchers import the tools and methods of highly quantitative, statistical analysis from the ‘hard’ sciences into computational, digital humanities research, must they also subscribe to the language and assumptions underlying such ‘scientificity’? If so, how does this affect the choices made in gathering, processing, analysing, and disseminating the outcomes of digital humanities research? In particular, is there a need to rethink the forms and formats of publishing scholarly work in order to enable the rigorous scrutiny and replicability of research outcomes?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnostics of rolling element bearings involves a combination of different techniques of signal enhancing and analysis. The most common procedure presents a first step of order tracking and synchronous averaging, able to remove the undesired components, synchronous with the shaft harmonics, from the signal, and a final step of envelope analysis to obtain the squared envelope spectrum. This indicator has been studied thoroughly, and statistically based criteria have been obtained, in order to identify damaged bearings. The statistical thresholds are valid only if all the deterministic components in the signal have been removed. Unfortunately, in various industrial applications, characterized by heterogeneous vibration sources, the first step of synchronous averaging is not sufficient to eliminate completely the deterministic components and an additional step of pre-whitening is needed before the envelope analysis. Different techniques have been proposed in the past with this aim: The most widely spread are linear prediction filters and spectral kurtosis. Recently, a new technique for pre-whitening has been proposed, based on cepstral analysis: the so-called cepstrum pre-whitening. Owing to its low computational requirements and its simplicity, it seems a good candidate to perform the intermediate pre-whitening step in an automatic damage recognition algorithm. In this paper, the effectiveness of the new technique will be tested on the data measured on a full-scale industrial bearing test-rig, able to reproduce the harsh conditions of operation. A benchmark comparison with the traditional pre-whitening techniques will be made, as a final step for the verification of the potentiality of the cepstrum pre-whitening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmission path from the excitation to the measured vibration on the surface of a mechanical system introduces a distortion both in amplitude and in phase. Moreover, in variable speed conditions, the amplification/attenuation and the phase shift, due to the transfer function of the mechanical system, varies in time. This phenomenon reduces the effectiveness of the traditionally tachometer based order tracking, compromising the results of a discrete-random separation performed by a synchronous averaging. In this paper, for the first time, the extent of the distortion is identified both in the time domain and in the order spectrum of the signal, highlighting the consequences for the diagnostics of rotating machinery. A particular focus is given to gears, providing some indications on how to take advantage of the quantification of the disturbance to better tune the techniques developed for the compensation of the distortion. The full theoretical analysis is presented and the results are applied to an experimental case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring of the integrity of rolling element bearings in the traction system of high speed trains is a fundamental operation in order to avoid catastrophic failures and to implement effective condition-based maintenance strategies. Diagnostics of rolling element bearings is usually based on vibration signal analysis by means of suitable signal processing techniques. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in industrial applications, particularly in the field of rail transport, remains scarcely investigated. This paper will address the diagnostics of bearings taken from the service after a long term operation on a high speed train. These worn bearings have been installed on a test-rig, consisting of a complete full-scale traction system of a high speed train, able to reproduce the effects of wheel-track interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is also proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces our dedicated authenticated encryption scheme ICEPOLE. ICEPOLE is a high-speed hardware-oriented scheme, suitable for high-throughput network nodes or generally any environment where specialized hardware (such as FPGAs or ASICs) can be used to provide high data processing rates. ICEPOLE-128 (the primary ICEPOLE variant) is very fast. On the modern FPGA device Virtex 6, a basic iterative architecture of ICEPOLE reaches 41 Gbits/s, which is over 10 times faster than the equivalent implementation of AES-128-GCM. The throughput-to-area ratio is also substantially better when compared to AES-128-GCM. We have carefully examined the security of the algorithm through a range of cryptanalytic techniques and our findings indicate that ICEPOLE offers high security level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Self-report measures are typically used to assess the effectiveness of road safety advertisements. However, psychophysiological measures of persuasive processing (i.e., skin conductance response [SCR]) and objective driving measures of persuasive outcomes (i.e., in-vehicle GPS devices) may provide further insights into the effectiveness of these advertisements. This study aimed to explore the persuasive processing and outcomes of two anti-speeding advertisements by incorporating both self-report and objective measures of speeding behaviour. In addition, this study aimed to compare the findings derived from these different measurement approaches. Methods Young drivers (N = 20, Mage = 21.01 years) viewed either a positive or negative emotion-based anti-speeding television advertisement. Whilst viewing the advertisement, SCR activity was measured to assess ad-evoked arousal responses. The RoadScout® GPS device was then installed into participants’ vehicles for one week to measure on-road speed-related driving behaviour. Self-report measures assessed persuasive processing (emotional and arousal responses) and actual driving behaviour. Results There was general correspondence between the self-report measures of arousal and the SCR and between the self-report measure of actual driving behaviour and the objective driving data (as assessed via the GPS devices). Conclusions This study provides insights into how psychophysiological and GPS devices could be used as objective measures in conjunction with self-report measures to further understand the persuasive processes and outcomes of emotion-based anti-speeding advertisements.