948 resultados para Multiple delay estimation
Resumo:
In this paper, a model of the measuring process of sonic anemometers with more than one measuring path is presented. The main hypothesis of the work is that the time variation of the turbulent speed field during the sequence of pulses that produces a measure of the wind speed vector affects the measurement. Therefore, the previously considered frozen flow, or instantaneous averaging, condition is relaxed. This time variation, quantified by the mean Mach number of the flow and the time delay between consecutive pulses firings, in combination with both the full geometry of sensors (acoustic path location and orientation) and the incidence angles of the mean with speed vector, give rise to significant errors in the measurement of turbulence which are not considered by models based on the hypothesis of instantaneous line averaging. The additional corrections (relative to the ones proposed by instantaneous line-averaging models) are strongly dependent on the wave number component parallel to the mean wind speed, the time delay between consecutive pulses, the Mach number of the flow, the geometry of the sensor and the incidence angles of mean wind speed vector. Kaimal´s limit k W1=1/l (where k W1 is the wave number component parallel to mean wind speed and l is the path length) for the maximum wave numbers from which the sonic process affects the measurement of turbulence is here generalized as k W1=C l /l, where C l is usually lesser than unity and depends on all the new parameters taken into account by the present model.
Resumo:
Echolocating big brown bats (Eptesicus fuscus) broadcast ultrasonic frequency-modulated (FM) biosonar sounds (20–100 kHz frequencies; 10–50 μs periods) and perceive target range from echo delay. Knowing the acuity for delay resolution is essential to understand how bats process echoes because they perceive target shape and texture from the delay separation of multiple reflections. Bats can separately perceive the delays of two concurrent electronically generated echoes arriving as little as 2 μs apart, thus resolving reflecting points as close together as 0.3 mm in range (two-point threshold). This two-point resolution is roughly five times smaller than the shortest periods in the bat’s sounds. Because the bat’s broadcasts are 2,000–4,500 μs long, the echoes themselves overlap and interfere with each other, to merge together into a single sound whose spectrum is shaped by their mutual interference depending on the size of the time separation. To separately perceive the delays of overlapping echoes, the bat has to recover information about their very small delay separation that was transferred into the spectrum when the two echoes interfered with each other, thus explicitly reconstructing the range profile of targets from the echo spectrum. However, the bat’s 2-μs resolution limit is so short that the available spectral cues are extremely limited. Resolution of delay seems overly sharp just for interception of flying insects, which suggests that the bat’s biosonar images are of higher quality to suit a wider variety of orientation tasks, and that biosonar echo processing is correspondingly more sophisticated than has been suspected.
Resumo:
Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.
Resumo:
In this paper we propose a two-component polarimetric model for soil moisture estimation on vineyards suited for C-band radar data. According to a polarimetric analysis carried out here, this scenario is made up of one dominant direct return from the soil and a multiple scattering component accounting for disturbing and nonmodeled signal fluctuations from soil and short vegetation. We propose a combined X-Bragg/Fresnel approach to characterize the polarized direct response from soil. A validation of this polarimetric model has been performed in terms of its consistency with respect to the available data both from RADARSAT-2 and from indoor measurements. High inversion rates are reported for different phenological stages of vines, and the model gives a consistent interpretation of the data as long as the volume component power remains about or below 50% of the surface contribution power. However, the scarcity of soil moisture measurements in this study prevents the validation of the algorithm in terms of the accuracy of soil moisture retrieval and an extensive campaign is required to fully demonstrate the validity of the model. Different sources of mismatches between the model and the data have been also discussed and analyzed.
Resumo:
This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis.
Resumo:
Colors of special-effect coatings have strong dependence on illumination/viewing geometry and an appealing appearance. An open question is to ask about the minimum number of measurement geometries required to completely characterize their observed color shift. A recently published principal components analysis (PCA)-based procedure to estimate the color of special-effect coatings at any geometry from measurements at a reduced set of geometries was tested in this work by using the measurement geometries of commercial portable multiangle spectrophotometers X-Rite MA98, Datacolor FX10, and BYK-mac as reduced sets. The performance of the proposed PCA procedure for the color-shift estimation for these commercial geometries has been examined for 15 special-effect coatings. Our results suggest that for rendering the color appearance of 3D objects covered with special-effect coatings, the color accuracy obtained with this procedure may be sufficient. This is the case especially if geometries of X-Rite MA98 or Datacolor FX10 are used.
Resumo:
This paper deals with the estimation of a time-invariant channel spectrum from its own nonuniform samples, assuming there is a bound on the channel’s delay spread. Except for this last assumption, this is the basic estimation problem in systems providing channel spectral samples. However, as shown in the paper, the delay spread bound leads us to view the spectrum as a band-limited signal, rather than the Fourier transform of a tapped delay line (TDL). Using this alternative model, a linear estimator is presented that approximately minimizes the expected root-mean-square (RMS) error for a deterministic channel. Its main advantage over the TDL is that it takes into account the spectrum’s smoothness (time width), thus providing a performance improvement. The proposed estimator is compared numerically with the maximum likelihood (ML) estimator based on a TDL model in pilot-assisted channel estimation (PACE) for OFDM.
Resumo:
AIM: To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). METHODS: Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay). RESULTS: PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. CONCLUSION: Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors.
Resumo:
Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.
Resumo:
Purpose: To evaluate the predictability of the refractive correction achieved with a positional accommodating intraocular lenses (IOL) and to develop a potential optimization of it by minimizing the error associated with the keratometric estimation of the corneal power and by developing a predictive formula for the effective lens position (ELP). Materials and Methods: Clinical data from 25 eyes of 14 patients (age range, 52–77 years) and undergoing cataract surgery with implantation of the accommodating IOL Crystalens HD (Bausch and Lomb) were retrospectively reviewed. In all cases, the calculation of an adjusted IOL power (PIOLadj) based on Gaussian optics considering the residual refractive error was done using a variable keratometric index value (nkadj) for corneal power estimation with and without using an estimation algorithm for ELP obtained by multiple regression analysis (ELPadj). PIOLadj was compared to the real IOL power implanted (PIOLReal, calculated with the SRK-T formula) and also to the values estimated by the Haigis, HofferQ, and Holladay I formulas. Results: No statistically significant differences were found between PIOLReal and PIOLadj when ELPadj was used (P = 0.10), with a range of agreement between calculations of 1.23 D. In contrast, PIOLReal was significantly higher when compared to PIOLadj without using ELPadj and also compared to the values estimated by the other formulas. Conclusions: Predictable refractive outcomes can be obtained with the accommodating IOL Crystalens HD using a variable keratometric index for corneal power estimation and by estimating ELP with an algorithm dependent on anatomical factors and age.
Resumo:
In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.
Resumo:
A new radiolarian-based transfer function for sea surface temperature (SST) estimations has been developed from 23 taxa and taxa groups in 53 surface sediment samples recovered between 35° and 72°S in the Atlantic sector of the Southern Ocean. For the selection of taxa and taxa groups ecological information from water column studies was considered. The transfer function allows the estimation of austral summer SST (December-March) ranging between -1 and 18°C with a standard error of estimate of 1.2°C. SST estimates from selected late Pleistocene squences were sucessfully compared with independend paleotemperature estimates derived from a diatom transfer function. This shows that radiolarians provide an excellent tool for paleotemperature reconstructions in Pleistocene sediments of the Southern Ocean.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Conflicting findings regarding the ability of people with schizophrenia to maintain and update semantic contexts have been due, arguably, to vagaries within the experimental design employed (e.g. whether strongly or remotely associated prime-target pairs have been used, what delay between the prime and the target was employed, and what proportion of related prime-target pairs appeared) or to characteristics of the participant cohort (e.g. medication status, chronicity of illness). The aim of the present study was to examine how people with schizophrenia maintain and update contextual information over an extended temporal window by using multiple primes that were either remotely associated or unrelated to the target. Fourteen participants with schizophrenia and 12 healthy matched controls were compared across two stimulus onset asynchronies (SOAs) (short and long) and two relatedness proportions (RP) (high and low) in a crossed design. Analysis of variance statistics revealed significant two- and three-way interactions between Group and SOA, Group and Condition, SOA and RP, and Group, SOA and RP. The participants with schizophrenia showed evidence of enhanced remote priming at the short SOA and low RP, combined with a reduction in the time course over which context could be maintained. There was some sensitivity to biasing contextual information at the short SOA, although the mechanism over which context served to update information appeared to be different from that in the controls. The participants with schizophrenia showed marked performance decrements at the long SOA (both low and high RP). Indices of remote priming at the short (but not the long) SOA correlated with both clinical ratings of thought disorder and with increasing length of illness. The results support and extend the hypothesis that schizophrenia is associated with concurrent increases in tonic dopamine activity and decreases in phasic dopamine activity. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Single shortest path extraction algorithms have been used in a number of areas such as network flow and image analysis. In image analysis, shortest path techniques can be used for object boundary detection, crack detection, or stereo disparity estimation. Sometimes one needs to find multiple paths as opposed to a single path in a network or an image where the paths must satisfy certain constraints. In this paper, we propose a new algorithm to extract multiple paths simultaneously within an image using a constrained expanded trellis (CET) for feature extraction and object segmentation. We also give a number of application examples for our multiple paths extraction algorithm.