994 resultados para Multi-Narrative
Resumo:
Proposed transmission smart grids will use a digital platform for the automation of substations operating at voltage levels of 110 kV and above. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850-8-1 and IEC 61850-9-2 provide an inter-operable solution to support multi-vendor digital process bus solutions, allowing for the removal of potentially lethal voltages and damaging currents from substation control rooms, a reduction in the amount of cabling required in substations, and facilitates the adoption of non-conventional instrument transformers (NCITs). IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. This paper describes a specific test and evaluation system that uses real time simulation, protection relays, PTPv2 time clocks and artificial network impairment that is being used to investigate technical impediments to the adoption of SV process bus systems by transmission utilities. Knowing the limits of a digital process bus, especially when sampled values and NCITs are included, will enable utilities to make informed decisions regarding the adoption of this technology.
Resumo:
In order to achieve meaningful reductions in individual ecological footprints, individuals must dramatically alter their day to day behaviours. Effective interventions will need to be evidence based and there is a necessity for the rapid transfer or communication of information from the point of research, into policy and practice. A number of health disciplines, including psychology and public health, share a common mission to promote health and well-being and it is becoming clear that the most practical pathway to achieving this mission is through interdisciplinary collaboration. This paper argues that an interdisciplinary collaborative approach will facilitate research that results in the rapid transfer of findings into policy and practice. The application of this approach is described in relation to the Green Living project which explored the psycho-social predictors of environmentally friendly behaviour. Following a qualitative pilot study, and in consultation with an expert panel comprising academics, industry professionals and government representatives, a self-administered mail survey was distributed to a random sample of 3000 residents of Brisbane and Moreton Bay (Queensland, Australia). The Green Living survey explored specific beliefs which included attitudes, norms, perceived control, intention and behaviour, as well as a number of other constructs such as environmental concern and altruism. This research has two beneficial outcomes. First, it will inform a practical model for predicting sustainable living behaviours and a number of local councils have already expressed an interest in making use of the results as part of their ongoing community engagement programs. Second, it provides an example of how a collaborative interdisciplinary project can provide a more comprehensive approach to research than can be accomplished by a single disciplinary project.
Resumo:
In today’s electronic world vast amounts of knowledge is stored within many datasets and databases. Often the default format of this data means that the knowledge within is not immediately accessible, but rather has to be mined and extracted. This requires automated tools and they need to be effective and efficient. Association rule mining is one approach to obtaining knowledge stored with datasets / databases which includes frequent patterns and association rules between the items / attributes of a dataset with varying levels of strength. However, this is also association rule mining’s downside; the number of rules that can be found is usually very big. In order to effectively use the association rules (and the knowledge within) the number of rules needs to be kept manageable, thus it is necessary to have a method to reduce the number of association rules. However, we do not want to lose knowledge through this process. Thus the idea of non-redundant association rule mining was born. A second issue with association rule mining is determining which ones are interesting. The standard approach has been to use support and confidence. But they have their limitations. Approaches which use information about the dataset’s structure to measure association rules are limited, but could yield useful association rules if tapped. Finally, while it is important to be able to get interesting association rules from a dataset in a manageable size, it is equally as important to be able to apply them in a practical way, where the knowledge they contain can be taken advantage of. Association rules show items / attributes that appear together frequently. Recommendation systems also look at patterns and items / attributes that occur together frequently in order to make a recommendation to a person. It should therefore be possible to bring the two together. In this thesis we look at these three issues and propose approaches to help. For discovering non-redundant rules we propose enhanced approaches to rule mining in multi-level datasets that will allow hierarchically redundant association rules to be identified and removed, without information loss. When it comes to discovering interesting association rules based on the dataset’s structure we propose three measures for use in multi-level datasets. Lastly, we propose and demonstrate an approach that allows for association rules to be practically and effectively used in a recommender system, while at the same time improving the recommender system’s performance. This especially becomes evident when looking at the user cold-start problem for a recommender system. In fact our proposal helps to solve this serious problem facing recommender systems.
Resumo:
Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.
Resumo:
The journalism revolution is upon us. In a world where we are constantly being told that everyone can be a publisher and challenges are emerging from bloggers, Twitterers and podcasters, journalism educators are inevitably reassessing what skills we now need to teach to keep our graduates ahead of the game. QUT this year tackled that question head-on as a curriculum review and program restructure resulted in a greater emphasis on online journalism. The author spent a week in the online newsrooms of each of two of the major players – ABC online news and thecouriermail.com to watch, listen and interview some of the key players. This, in addition to interviews with industry leaders from Fairfax and news.com, lead to the conclusion that while there are some new skills involved in new media much of what the industry is demanding is in fact good old fashioned journalism. Themes of good spelling, grammar, accuracy and writing skills and a nose for news recurred when industry players were asked what it was that they would like to see in new graduates. While speed was cited as one of the big attributes needed in online journalism, the conclusion of many of the players was that the skills of a good down-table sub or a journalist working for wire service were not unlike those most used in online newsrooms.
Resumo:
This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.
Researching employment relations : a self-reflexive analysis of a multi-method, school-based project
Resumo:
Drawing on primary data and adjunct material, this article adopts a critical self-reflexive approach to a three-year, Australian Research Council-funded projectthat explored themes around 'employment citizenship'for high school students in Queensland. The article addresses three overlapping areas that reflect some of the central dilemmas and challenges arising through the project- consent in the context of research ethics, questionnaire administration in schools, and focus group research practice. It contributes to the broader methodological literature addressing research with young people by canvassing pragmatic suggestions for future school-based research, and research addressing adolescent employment.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.
Resumo:
Abstract This study investigated depressive symptom and interpersonal relatedness outcomes from eight sessions of manualized narrative therapy for 47 adults with major depressive disorder. Post-therapy, depressive symptom improvement (d=1.36) and proportions of clients achieving reliable improvement (74%), movement to the functional population (61%), and clinically significant improvement (53%) were comparable to benchmark research outcomes. Post-therapy interpersonal relatedness improvement (d=.62) was less substantial than for symptoms. Three-month follow-up found maintenance of symptom, but not interpersonal gains. Benchmarking and clinical significance analyses mitigated repeated measure design limitations, providing empirical evidence to support narrative therapy for adults with major depressive disorder. RÉSUMÉ Cette étude a investigué les symptômes dépressifs et les relations interpersonnels d'une thérapie narrative en huit séances chez 47 adultes souffrant d'un trouble dépressif majeur. Après la thérapie, l'amélioration des symptômes dépressifs (d=1.36) et la proportion de clients atteignant un changement significatif (74%), le mouvement vers la population fonctionnelle (61%), enfin l'amélioration clinique significative (53%) étaient comparables aux performances des études de résultats. L'amélioration des relations interpersonnelles (d=0.62) était inférieure à l'amélioration symptomatique. Le suivi à trois mois montrait un maintien des gains symptomatiques mais pas pour les relations interpersonnelles. L’évaluation des performances et les analyses de significativité clinique modèrent les limitations du plan de recherche à mesures répétées et apportent une preuve empirique qui étaie l'efficacité des thérapies narratives pour des adultes avec un trouble dépressif majeur. Este estudo investigou sintomas depressivos e resultados interpessoais relacionados em oito sessões de terapia narrativa manualizada para 47 adultos com perturbação depressiva major. No pós terapia, melhoria de sintomas depressivos (d=1,36) e proporção de clientes que alcançam melhoria válida (74%), movimento para a população funcional (61%) e melhoria clinicamente significativa (53%) foram comparáveis com os resultados da investigação reportados. As melhorias pós terapia nos resultados interpessoais relacionados (d=.62) foi menos substancial do que para os sintomas. Aos três meses de seguimento houve a manutenção dos sintomas mas não dos ganhos interpessoais. As análises de benchemarking e de melhoria clinicamente significativas atenuam as limitações de um design de medidas repetidas, fornecendo evidência empírica para a terapia narrativa para adultos com perturbação depressiva major. Questo lavoro ha valutato i sintomi depressivi e gli outcome nella capacità di relazionarsi a livello interpersonale in 8 sedute di psicoterapia narrativa manualizzata in un gruppo di 47 adulti con depressione maggiore. I risultati ottenuti relativamente a: post terapy, miglioramento dei sintomi depressivi (d_1.36), proporzione di pazienti che hanno raggiunto un miglioramento affidabile e consistente (74%), movimento verso il funzionamento atteso nella popolazione (61%) e miglioramento clinicamente significativo (53%) sono paragonabili ai valori di riferimento della ricerca sull'outcome. I miglioramento della capacità di relazionarsi valutata alla fine del trattamento (d_.62) si è rivelata meno sostanziale rispetto ai sintomi. Un follow-up dopo 3 mesi ha dimostrato che il miglioramento sintomatologico è stato mantenuto, ma non quello degli obiettivi interpersonali. Valori di riferimento e analisi della significatività clinica hanno fatto fronte ai limiti del disegno a misure ripetute, offrendo prove empiriche sulla rilevanza della terapia narrativa in pazienti adulti con depressione maggiore
Resumo:
Introduction The ability to screen blood of early stage operable breast cancer patients for circulating tumour cells is of potential importance for identifying patients at risk of developing distant relapse. We present the results of a study of the efficacy of the immunobead RT-PCR method in identifying patients with circulating tumour cells. Results Immunomagnetic enrichment of circulating tumour cells followed by RT-PCR (immunobead RT-PCR) with a panel of five epithelial specific markers (ELF3, EPHB4, EGFR, MGB1 and TACSTD1) was used to screen for circulating tumour cells in the peripheral blood of 56 breast cancer patients. Twenty patients were positive for two or more RT-PCR markers, including seven patients who were node negative by conventional techniques. Significant increases in the frequency of marker positivity was seen in lymph node positive patients, in patients with high grade tumours and in patients with lymphovascular invasion. A strong trend towards improved disease free survival was seen for marker negative patients although it did not reach significance (p = 0.08). Conclusion Multi-marker immunobead RT-PCR analysis of peripheral blood is a robust assay that is capable of detecting circulating tumour cells in early stage breast cancer patients.