953 resultados para Metal-complexes
Resumo:
The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.
Resumo:
Quercetin is a naturally occurring polyphenol compound present in grapes, red wine, tea, apples and some vegetables. Like other flavonoids, it has been found to have antioxidant activity in studies in vitro, although there is still much debate about the bioavailability of flavonoids in the diet and their in vivo antioxidant activity. In general, it is thought that the antioxidant efficiency of polyphenols increases with increasing hydroxylation of the rings, but there have been few studies of other substitutions. We have prepared several derivatives of quercetin, to test the effect of modification on their antioxidant potential. Sodium salts of quercetin-5-sulfonate and quercetin-5,8-sulfonate, and transition metal complexes of quercetin-5-sulfonate were analysed for their total antioxidant potential using the FRAP assay, and compared to unmodified quercetin. It was found that quercetin-5-sulfonate complexes with Zn, Cu(II), Fe(II) and Mg were all significantly better antioxidants than quercetin, quercetin-5-sulfonate was comparable to quercetin, whereas the sodium salt of quercetin-5,8-sulfonate had a decreased total antioxidant potential. Kinetic studies of the FRAP reaction showed no significant differences between quercitin and any of the derivatives. The reaction of all the quercetins in the FRAP assay was found to be slower to reach completion than ascorbate, and appeared to have biphasic characteristics. These results suggest that transition metal ions may facilitate the transfer of electrons from the polyphenol ring system to the oxidant, while substitution with S03 is electron-withdrawing and destabilizes the ring system. This is important both for understanding the antioxidant ability of flavonoids, and for the design of novel antioxidant compounds. Further work is being carried out to assess the ability of the quercetin complexes to protect cultured cells from oxidative stress.
Resumo:
The work embodied in this thesis was carried out by the author in the Department of Applied Chemistry, CUSAT, Kochi, during the period 2009-2012. The thesis is an introduction to our attempts to evaluate the coordination behavior of some compounds of our interest. The biological activities of semicarbazones and their metal complexes have been an active area of research during the past years because of their significant role in naturally occurring biological systems. Tridentate NNO and ONO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are wellauthenticated compounds in this field and their synthesis, crystal structures and spectral studies are well desirable. Hence, we decided to develop a research program aimed at the syntheses, crystal structures and spectral studies of new N4- phenylsemicarbazones derived from 2-formylpyridine and 3-ethoxysalicylaldehyde and their transition metal complexes and new transition metal complexes of 2- benzoylpyridine-N4-phenylsemicarbazone. In addition to various physicochemical methods of analysis, single crystal X-ray diffraction studies were also used for the characterization of the complexes.
Resumo:
171 p.
Resumo:
Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV−vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.
Resumo:
The synthesis of manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of a new ligand 2-thiophene-2-yl-3(thiophene-2-carboxylidene-amino)-1,2-dihydroquinazolin-4(3H)-one (TTCADQ) is described. The ligand and metal complexes were characterized by elemental analysis, conductivity measurements, spectral (u.v.-vis., i.r., 1D n.m.r., 2D hetcor and e.p.r.) and thermal studies. The formation of 1,2-dihydroquinazolin-4(3H)-one rather than hydrazone, in the reaction of aromatic aldehyde and o-aminobenzoylhydrazide is proved by single crystal X-ray diffraction and 2D hetcor n.m.r. studies. On the basis of elemental analysis, u.v.-vis.spectroscopy and magnetic moment studies, six coordinate geometry for all the complexes was proposed. The i.r. spectral studies reveal the bidentate behaviour of the ligand.
Resumo:
The coordinating behavior of a new dihydrazone ligand, 2,6-bis(3-methoxysalicylidene) hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with alpha=98.491(10)degrees, beta=110.820(10)degrees and gamma=92.228(10)degrees. The cell dimensions are a=10.196(7)angstrom, b=10.814(7)angstrom, c=10.017(7)angstrom, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso) = 2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Spontaneous halide ejection from a three-coordinate Lewis acid has been shown to offer a remarkable new route to cationic metal complexes featuring a linear, multiply bonded boron-donor Ligand. The exploitation of electron-rich [CpM(PR3)(2)] fragments within boryl systems of the type LnMB(hal)NR2 leads to the spontaneous formation in polar solvents of chemically robust borylene complexes, [LnM(BNR2)](+), with exceptionally low electrophilicity and short M-B bonds. This is reflected by M-B distances (ca. 1.80 angstrom for FeB systems) which are more akin to alkyl-/aryl-substituted borylene complexes and, perhaps most strikingly, by the very low exothermicity associated with the binding of pyridine to the two-coordinate boron center (Delta H = -7.4 kcal mol(-1), cf. -40.7 kcal mol(-1) for BCl3). Despite the strong pi electron release from the metal fragment implied by this suppressed reactivity and by such short M-B bonds, the barrier to rotation about the Fe=B bond in the unsymmetrical variant [CpFe(dmpe)(BN{C6H4OMe-4}Me)](+) is found to be very small (ca. 2.9 kcal mol(-1)). This apparent contradiction is rationalized by the orthogonal orientations of the HOMO and HOMO-2 orbitals of the [CpML2](+) fragment, which mean that the M-B pi interaction does not fall to zero even in the highest energy conformation.
Resumo:
Two major topics are covered: the first chapter is focused on the development of post-metallocene complexes for propylene polymerization. The second and third chapters investigate the consequences of diisobutylaluminum hydride (HAliBu2) additives in zirconocene based polymerization systems.
The synthesis, structure, and solution behavior of early metal complexes with a new tridentate LX2 type ligand, bis(thiophenolate)pyridine ((SNS) = (2-C6H4S)2-2,6-C5H3N) are investigated. SNS complexes of Ti, Zr, and Ta having dialkylamido coligands were synthesized and structurally characterized. The zirconium complex, (SNS)Zr(NMe2)2, displays C2 symmetry in the solid state. Solid-state structures of tantalum complexes (SNS)Ta(NMe2)3 and (SNS)TaCl(NEt2)2 also display pronounced C2 twisting of the SNS ligand. 1D and 2D NMR experiments show that (SNS)Ta(NMe2)3 is fluxional with rotation about the Ta N(amide) bonds occurring on the NMR timescale. The fluxional behavior of (SNS)TaCl(NEt2)2 in solution was also studied by variable temperature 1H NMR. Observation of separate signals for the diastereotopic protons of the methylene unit of the diethylamide indicates that the complex remains locked on the NMR timescale in one diastereomeric conformation at temperatures below -50 °C.
Reduction of Zr(IV) metallocenium cations with sodium amalgam (NaHg) produces EPR signals assignable to Zr(III) metallocene complexes. Thus, chloro-bridged heterobinuclear ansa-zirconocenium cation [((SBI))Zr(μ-Cl)2AlMe2]+B(C6F5)4¯ (SBI = rac-dimethylsilylbis(1-indenyl)), gives rise to an EPR signal assignable to the complex (SBI)ZrIII(μ-Cl)2AlMe2, while (SBI)ZrIII-Me and (SBI)ZrIII(-H)2AliBu2 are formed by reduction of [(SBI)Zr(μ-Me)2AlMe2]+B(C6F5)4¯ and [(SBI)Zr(μ-H)3(AliBu2)2]+B(C6F5)4¯, respectively. These products are also formed, along with (SBI)ZrIII-iBu and [(SBI)ZrIII]+ AlR4¯ when (SBI)ZrMe2 reacts with HAliBu2, eliminating isobutane en route to the Zr(III) complex. Studies concerning the interconversion reactions between these and other (SBI)Zr(III) complexes and reaction mechanisms involved in their formation are also reported.
The addition of HAliBu2 to precatalyst [(SBI)Zr(µ-H)3(AliBu2)2]+ significantly slows the polymerization of propylene and changes the kinetics of polymerization from 1st to 2nd order with respect to propylene. This is likely due to competitive inhibition by HAliBu2. When the same reaction is investigated using [(nBuCp)2Zr(μ-H)3(AliBu2)2]+, hydroalumination between propylene and HAliBu2 is observed instead of propylene polymerization.
Resumo:
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M-2(L)(2) (mu-OCH3)(2) [M = Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC. Different thermodynamic and kinetic parameters namely activation energy (E
Resumo:
Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.