930 resultados para Lattice theory - Computer simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto de investigación busca usar un sistema de cómputo basado en modelación por agentes para medir la percepción de marca de una organización en una población heterogénea. Se espera proporcionar información que permita dar soluciones a una organización acerca del comportamiento de sus consumidores y la asociada percepción de marca. El propósito de este sistema es el de modelar el proceso de percepción-razonamiento-acción para simular un proceso de razonamiento como el resultado de una acumulación de percepciones que resultan en las acciones del consumidor. Este resultado definirá la aceptación de marca o el rechazo del consumidor hacia la empresa. Se realizó un proceso de recolección información acerca de una organización específica en el campo de marketing. Después de compilar y procesar la información obtenida de la empresa, el análisis de la percepción de marca es aplicado mediante procesos de simulación. Los resultados del experimento son emitidos a la organización mediante un informe basado en conclusiones y recomendaciones a nivel de marketing para mejorar la percepción de marca por parte de los consumidores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of cobalt in mixed metal carbonates is a possible route to the immobilization of this toxic element in the environment. However, the thermodynamics of (Ca,Co)CO3 solid solutions are still unclear due to conflicting data from experiment and from the observation of natural ocurrences. We report here the results of a computer simulation study of the mixing of calcite (CaCO3) and spherocobaltite (CoCO3), using density functional theory calculations. Our simulations suggest that previously proposed thermodynamic models, based only on the range of observed compositions, significantly overestimate the solubility between the two solids and therefore underestimate the extension of the miscibility gap under ambient conditions. The enthalpy of mixing of the disordered solid solution is strongly positive and moderately asymmetric: calcium incorporation in spherocobaltite is more endothermic than cobalt incorporation in calcite. Ordering of the impurities in (0001) layers is energetically favourable with respect to the disordered solid solution at low temperatures and intermediate compositions, but the ordered phase is still unstable to demixing. We calculate the solvus and spinodal lines in the phase diagram using a sub-regular solution model, and conclude that many Ca1-xCoxCO3 mineral solid solutions (with observed compositions of up to x=0.027, and above x=0.93) are metastable with respect to phase separation. We also calculate solid/aqueous distribution coefficients to evaluate the effect of the strong non-ideality of mixing on the equilibrium with aqueous solution, showing that the thermodynamically-driven incorporation of cobalt in calcite (and of calcium in spherocobaltite) is always very low, regardless of the Co/Ca ratio of the aqueous environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer simulation method has been used to study the three-dimensional structural formation and transition of eleetromagnetorheological (EMR) suspensions under compatible electric and magnetic fields. When the fields are applied simultaneously and perpendicularly to each other, the particles rapidly arrange into single layer structures parallel to both fields. In each layer, there is a two-dimensional hexagonal lattice. The single layers then combine together to form thicker sheetlike structures. With the help of the thermal fluctuations, the thicker structures relax into three-dimensional close-packed structures, which may be face-centered cubic (fcc), hexagonal close-packed (hup) lattices, or, more probably, the mixture of them, depending on the initial configurations and the thermal fluctuations. On the other hand, if the electric field is applied first to induce the body-centered tetragonal (bct) columns in the system, and then the magnetic field is applied in the perpendicular direction, the bet to fee structure transition is observed in a very short time. Following that, the structure keeps on evolving due to the demagnetization effect and finally forms close-packed structures with fee and hcp lattice character. The simulation results are in agreement with the theoretical and experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+:LiYF4 single crystal has been studied by absorption and fluorescence spectroscopy in the IR-visible-UV (0-44000 cm-1) region from 4.2 K to room temperature. Polarized spectra were recorded in order to assign numerous Stark levels of electronic transitions mentioned but not attributed before in the related literature and to discuss the irreducible representations (irreps) of the 4I15/2 sublevels. A parametric hamiltonian, including free ion (Eν, α, β, γ, Tλ, ζ, Mk and Pi) and crystal field parameters (B2 0, B4 0, B4 4, B6 0 and B6 4) in an approximate D2d symmetry for the rare earth site in this scheelite type structure, was used to simulate 109 energy positions of the Er ion with a r.m.s. standard deviation of 14.6 cm-1. A comparison with previously published results for Nd3+ in the same matrix is done. © 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and structural properties and elastic constants of the wurtzite phase of GaN, was investigated by computer simulation at Density Functional Theory level, with B3LYP and B3PW hybrid functional. The electronic properties were investigated through the analysis of the band structures and density of states, and the mechanical properties were studied through the calculus of the elastic constants: C11, C33, C44, C12, and C13. The results show that the maximum of the valence band and the minimum of the conduction band are both located at the Γ point, indicating that GaN is a direct band gap semiconductor. The following constants were obtained for B3LYP and B3PW (in brackets): C11 = 366.9 [372.4], C33 = 390.9 [393.4], C44 = 99.1 [96.9], C12 = 143.6 [155.2], and C13 = 107.6 [121.4].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work contains several applications of the mode-coupling theory (MCT) and is separated into three parts. In the first part we investigate the liquid-glass transition of hard spheres for dimensions d→∞ analytically and numerically up to d=800 in the framework of MCT. We find that the critical packing fraction ϕc(d) scales as d²2^(-d), which is larger than the Kauzmann packing fraction ϕK(d) found by a small-cage expansion by Parisi and Zamponi [J. Stat. Mech.: Theory Exp. 2006, P03017 (2006)]. The scaling of the critical packing fraction is different from the relation ϕc(d)∼d2^(-d) found earlier by Kirkpatrick and Wolynes [Phys. Rev. A 35, 3072 (1987)]. This is due to the fact that the k dependence of the critical collective and self nonergodicity parameters fc(k;d) and fcs(k;d) was assumed to be Gaussian in the previous theories. We show that in MCT this is not the case. Instead fc(k;d) and fcs(k;d), which become identical in the limit d→∞, converge to a non-Gaussian master function on the scale k∼d^(3/2). We find that the numerically determined value for the exponent parameter λ and therefore also the critical exponents a and b depend on the dimension d, even at the largest evaluated dimension d=800. In the second part we compare the results of a molecular-dynamics simulation of liquid Lennard-Jones argon far away from the glass transition [D. Levesque, L. Verlet, and J. Kurkijärvi, Phys. Rev. A 7, 1690 (1973)] with MCT. We show that the agreement between theory and computer simulation can be improved by taking binary collisions into account [L. Sjögren, Phys. Rev. A 22, 2866 (1980)]. We find that an empiric prefactor of the memory function of the original MCT equations leads to similar results. In the third part we derive the equations for a mode-coupling theory for the spherical components of the stress tensor. Unfortunately it turns out that they are too complex to be solved numerically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N. Bostrom’s simulation argument and two additional assumptions imply that we are likely to live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Monte Carlo computer simulation technique, in which a continuum system is modeled employing a discrete lattice, has been applied to the problem of recrystallization. Primary recrystallization is modeled under conditions where the degree of stored energy is varied and nucleation occurs homogeneously (without regard for position in the microstructure). The nucleation rate is chosen as site saturated. Temporal evolution of the simulated microstructures is analyzed to provide the time dependence of the recrystallized volume fraction and grain sizes. The recrystallized volume fraction shows sigmoidal variations with time. The data are approximately fit by the Johnson-Mehl-Avrami equation with the expected exponents, however significant deviations are observed for both small and large recrystallized volume fractions. Under constant rate nucleation conditions, the propensity for irregular grain shapes is decreased and the density of two sided grains increases.