Fronts from complex two-dimensional dispersal kernels: theory and application to Reid's paradox
Data(s) |
2007
|
---|---|
Resumo |
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels |
Formato |
application/pdf |
Identificador |
Fort, J. (2007). Fronts from complex two-dimensional dispersal kernels: theory and application to Reid's paradox. Journal of Applied Physics, 101 (9), 094701. Recuperat 7 febrer 2011, a http://link.aip.org/link/JAPIAU/v101/i9/p094701/s1 0021-8979 (versió paper) 1089-7550 (versió electrònica) |
Idioma(s) |
eng |
Publicador |
American Institute of Physics |
Relação |
Reproducció digital del document publicat a: http://dx.doi.org/10.1063/1.2733631 © Journal of Applied Physics, 2007, vol. 101, núm. 9 Articles publicats (D-F) |
Direitos |
Tots els drets reservats |
Palavras-Chave | #Àlgebra #Arbres (Teoria de grafs) #Diferències finites #Dinàmica molecular -- Simulació per ordinador #Distribució (Teoria de la probabilitat) #Kernel, Funcions de #Reid, Paradoxa de #Distribution (Probability theory) #Finite differences #Kernel functions #Molecular dynamics -- Computer simulation #Reid's paradox #Trees (Graph theory) |
Tipo |
info:eu-repo/semantics/article |