947 resultados para Label-free redox capacitance biosensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hybridization of immobilized oligonucleotides probe strands with solution phase targets is the underlying principle of microarraybased techniques for the analysis of DNA variation. To study the kinetics of DNA/DNA hybridization, target DNA is often prior labeled with markers. A label-free method of electrochemical impedance spectra (EIS) for study the hybridization in process was reported. The Langmuir model was used to determine the association rate constant (K-on), the dissociation rate constant (K-off) and the affinity rate constant (K-A), for perfect matched DNA hybridization. The results show that, EIS is a successful technique possessing high effectivity and sensitivity to study DNA/DNA hybridization kinetics. This work can provide another view on EIS for the studying of DNA/DNA hybridization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small molecules are difficult to detect by conventional surface plasmon resonance (SPR) spectroscopy due to the fact that the changes in the refractive index resulted from the binding process of small biomolecules are quite small. Here, we report a simple and effective method to detect small biomolecule using SPR spectroscopy and electrochemistry by catalyzed deposition of metal ions on SPR gold film. As an example, the ascorbic acid-mediated deposition of Ag on gold film was monitored by in situ SPR spectrum. The deposition of Ag atom on gold film resulted in an obvious decrease of depth in SPR angular scan curves of reflectance intensity and minimum reflectivity angle. The depth change of the SPR reflectance intensity and minimum reflectivity angle curves mainly relied on the amount of Ag atom deposited on gold film that can be controlled by the concentration of ascorbic acid. By monitoring the deposition of Ag atom on gold film, ascorbic acid was detected in the concentration range of 2 x 10(-5) M to 1 x 10(-3) M. After each of detections, the SPR sensor surface was completely regenerated by a potential step that stripped off the Ag atom. Furthermore, the regeneration process of the sensor surface provides the feasibility for detecting the concentration of ascorbic acid by electrochemical method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biosensor based on surface plasmon resonance(SPR) technology is a very useful tool to study the interaction between biomolecles. The main advantages of this technique is to "visualize" macromolecular interactions directly in real time, and in a label-free mode rather than indirect methods like enzyme-linked immunosorbent assays (ELISAs). We immobilize human serum albumin (HSA) to the carboxymethyldextran-modified sensor chip surface covalently to detect the activity of anti-HSA in serum, and regenerate the surface with .1 mol/L phosphoric acid. The results show that SPR biosensor can detect the activity of anti-HSA in real-time quickly and the sensor chip can be used over 100 cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM).We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an "inclusion". Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ring-down absorption spectroscopy is an emerging ‘‘label-free’’ detection method for analytical microdevices, such as micrototal analysis systems (l-TAS). Developed from the related gas-phase cavity ring-down absorption spectroscopy, fiber-optic-based ring-down techniques for liquid samples offer low detection limits, high sensitivity and fast response. ª 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser.

The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) ?max shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH2)11(OCH2CH2)6OCH2COOH(OEG6) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR ?max shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface plasmon resonance (SPR)-based biosensor is a popular platform for real-time monitoring and sensitive detection for a myriad of targets. However, only a few studies have reported the use of bacteriophages as specific binders for SPR-based detection. This study aimed to demonstrate how filamentous M13 bacteriophages expressing 12-mer peptides can be employed in an SPR-based assay, using a Salmonella-specific bacteriophage as a model binder to detect the foodborne bacterium Salmonella. Several important factors (immobilization buffers and methods, and interaction buffers) for a successful bacteriophage-based SPR assay were optimized. As a result, a Salmonella-specific bacteriophage-based SPR assay was achieved, with very low cross reactivity with other non-target foodborne pathogens and detection limits of 8.0 × 107 and 1.3 × 107 CFU/mL for one-time and five-time immobilized sensors, respectively. This proof-of-concept study demonstrates the feasibility of using M13 bacteriophages expressing target-specific peptides as a binder in a rapid and label-free SPR assay for pathogen detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The safety of our food is an essential requirement of society. One well-recognised threat is that of chemical contamination of our food, where low-molecular-weight compounds such as biotoxins, drug residues and pesticides are present. Low-cost, rapid screening procedures are sought to discriminate the suspect samples from the population, thus selecting only these to be forwarded for confirmatory analysis. Many biosensor assays have been developed as screening tools in food contaminant analysis, but these tend to be electrochemical, fluorescence or surface plasmon resonance based. An alternative approach is the use of biolayer interferometry, which has become established in drug discovery and life science studies but is only now emerging as a potential tool in the analysis of food contaminants. A biolayer interferometry biosensor was assessed using domoic acid as a model compound. Instrument repeatability was tested by simultaneously producing six calibration curves showing replicate repeatability (n = 2) ranging from 0.1 to 6.5 % CV with individual concentration measurements (n = 12) ranging from 4.3 to 9.3 % CV, giving a calibration curve midpoint of 7.5 ng/ml (2.3 % CV (n = 6)). Reproducibility was assessed by producing three calibration curves on different days, giving a midpoint of 7.5 ng/ml (3.4 %CV (n = 3)). It was further shown, using assay development techniques, that the calibration curve midpoint could be adjusted from 10.4 to 1.9 ng/ml by varying assay parameters before the simultaneous construction of three calibration curves in matrix and buffer. Sensitivity of the assay compared favourably with previously published biosensor data for domoic acid. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arrays of vertically aligned gold nanotubes are fabricated over several square centimetres which display a geometry tunable plasmonic extinction peak at visible wavelengths and at normal incidence. The fabrication method gives control over nanotube dimensions with inner core diameters of 15–30 nm, wall thicknesses of 5–15 nm and nanotube lengths of up to 300 nm. It is possible to tune the position of the extinction peak through the wavelength range 600–900 nm by varying the inner core diameter and wall thickness. The experimental data are in agreement with numerical modelling of the optical properties which further reveal highly localized and enhanced electric fields around the nanotubes. The tunable nature of the optical response exhibited by such structures could be important for various label-free sensing applications based on both refractive index sensing and surface-enhanced Raman scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates that use specific conformation modulation of a guanine- and thymine- rich DNA, while the optical readout is enabled by the tunable alphabetical metamaterials, which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). By computational and experimental investigations, we present a comprehensive solution to tailor the plasmonic responses of MetaSERS with respect to the metamaterial geometry, excitation energy, and polarization. Our tunable MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid and sensitive detection of viral infections associated with Bovine Respiratory Disease (BRD) in live animals is recognized as key to minimizing the impact of this disease. ELISA-based testing is limited as it typically relies on the detection of a single viral antibody subtype within an individual test sample and testing is relatively slow and expensive. We have recently initiated a new project entitled AgriSense to develop a novel low-cost and label-free, integrated bimodal electronic biosensor system for BRD. The biosensor system will consist of an integrated multichannel thin-film-transistor biosensor and an electrochemical impedance spectroscopy biosensor, interfaced with PDMS-based microfluidic sample delivery channels. By using both sensors in tandem, nonspecific binding biomolecules must have the same mass to charge ratio as the target analyte to elicit equivalent responses from both sensors. The system will target simultaneous multiplexed sensing of the four primary viral agents involved in the development of BRD: bovine herpesvirus-1 (BHV-1), bovine parainfluenza virus-3 (BPIV-3), bovine respiratory syncytial virus (BRSV), and bovine viral diarrhea (BVD). Optimized experimental conditions derived through model antigen-antibody studies will be applied to the detection of serological markers of BRD-related infections based on IgG interaction with a panel of sensor-immobilized viral proteins. This rapid, “cowside” multiplex sensor capability presents a major step forward in disease diagnosis, helping to ensure the integrity of the agri-food supply chain by reducing the risk of disease spread during animal movement and transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates (AND, INHIBIT, and OR) that use specific conformation modulation of a guanine- and thymine-rich DNA, while the optical readout is enabled by the tunable metamaterials which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). Our MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions down to 2×10-4 ppb, which is four orders of magnitude lower than the exposure limit allowed by United States Environmental Protection Agency