872 resultados para Inverse integrating facto
Resumo:
A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies.
Resumo:
This book contains guidelines on market-driven production for export markets, with information on how the marketing chain operates and what risks are involved. Using rice flower as an example, the book gives growers strategies to enhance their market performance and improve the profitability of their enterprises. It outlines some practical suggestions for marketing rice flower in Japan, the United States, Taiwan and Hong Kong as well as in Australia, and also provides a draft standard for rice flower for export markets.
Resumo:
Integrating biodiversity conservation into forest management in non-industrial private forests requires changes in the practices of those public and private actors that have implementing responsibilities and whose strategic and operational opportunities are at stake. Understanding this kind of context-dependent institutional adaptation requires bridging between two analytical approaches: policy implementation and organizational adaptation, backed up with empirical analysis. The empirical analyses recapitulated in this thesis summary address organizational competences, specialization, professional judgment, and organizational networks. The analyses utilize qualitative and quantitative data from public and private sector organizations as well as associations. The empirical analyses produced stronger signals of policy implementation than of organizational adaptation. The organizations recognized the policy and social demand for integrating biodiversity conservation into forest management and their professionals were in favor of conserving biodiversity. However, conservation was integrated to forest management so tightly that it could be said to be subsumed by mainstream forestry. The organizations had developed some competences for conservation but the competences did not differentiate among the organizations other than illustrating the functional differences between industry, administration and associations. The networks that organizations depended on consisted of traditional forestry actors and peers both in planning policy and at the operational level. The results show that he demand for biodiversity conservation has triggered incremental changes in organizations. They can be considered inert regarding this challenge. Isomorphism is advanced by hierarchical guidance and standardization, and by professional norms. Analytically, this thesis contributes to the understanding of organizational behavior across the public and private sector boundaries. The combination of a policy implementation approach inherent in analysis of public policies in hierarchical administration settings, and organizational adaptation typically applied to private sector organizations, highlights the importance of institutional interpretation. Institutional interpretation serves the understanding of the empirically identified diversions from the basic tenets of the two approaches. Attention to institutions allows identification of the overlap of the traditionally segregated approaches.
Resumo:
The major banana production areas in Australia are particularly sensitive to environments due to their close proximity to areas of World Heritage rainforest and the Great Barrier Reef catchment. Management of soil quality, nutrients and pesticides are vital to maintaining the integrity of these sensitive areas. Studies on cropping systems have suggested that integrating organic matter into ground cover management would improve the quality of soil under banana cultivation. In this study, an alternative management practice for bananas, which addresses the management of organic matter and fertiliser application, was assessed and compared to the conventional practice currently employed in the banana industry. Several chemical, physical and biological soil parameters were measured including: pH, electrical conductivity, water stable aggregates, bulk density, water filled pore space, porosity, water content, fluorescein diacetate hydrolyis (FDA) and beta-glucosidase activity. The alternative management practice did not have a significant impact of the production and growth of bananas but overall improved the quality of the soil. Although some differences were observed, the chemical and physical soil characteristics did not differ dramatically between the two management systems. The addition of organic matter resulted in the soil under alternative practice having higher FDA and beta-glucosidase levels, indicating higher microbial activity. The integration of organic matter into the management of bananas resulted in positive benefits on soil properties under bananas, however, methods of maintaining organic matter in the soil need to be further researched.
Resumo:
A holistic approach to stock structure studies utilises multiple different techniques on the same individuals sampled from selected populations and combines results across spatial and temporal scales to produce a weight of evidence conclusion. It is the most powerful and reliable source of information to use in formulating resource management and monitoring plans. Few examples of the use of a holistic approach in stock structure studies exist, although more recently this is changing. Using such an approach makes integration of results from each technique challenging. An integrated stock definition (ISD) approach for holistic stock structure studies was developed in this study to aid in the appropriate interpretation of stock structure results to guide the determination of fishery management units. The ISD approach is applied herein to a study of the northern Australian endemic grey mackerel, Scomberomorus semifasciatus (Scombridae). Analyses of genetic (mitochondrial DNA and microsatellites), parasite, otolith stable isotope, and growth data are synthesised to determine the stock structure of S. semifasciatus across northern Australia. Integration of the results from all techniques identified at least six S. semifasciatus stocks for management purposes. Further, the use of the ISD approach provided a simple basis for integrating multiple techniques and for their interpretation. The use of this holistic approach was a powerful tool in providing greater certainty about the appropriate management units for S. semifasciatus. Future stock structure studies investigating spatial management questions in the fisheries context should adopt a holistic approach and apply the ISD approach for a more accurate definition of biological stocks to improve fisheries management.
Resumo:
The problem of recovering information from measurement data has already been studied for a long time. In the beginning, the methods were mostly empirical, but already towards the end of the sixties Backus and Gilbert started the development of mathematical methods for the interpretation of geophysical data. The problem of recovering information about a physical phenomenon from measurement data is an inverse problem. Throughout this work, the statistical inversion method is used to obtain a solution. Assuming that the measurement vector is a realization of fractional Brownian motion, the goal is to retrieve the amplitude and the Hurst parameter. We prove that under some conditions, the solution of the discretized problem coincides with the solution of the corresponding continuous problem as the number of observations tends to infinity. The measurement data is usually noisy, and we assume the data to be the sum of two vectors: the trend and the noise. Both vectors are supposed to be realizations of fractional Brownian motions, and the goal is to retrieve their parameters using the statistical inversion method. We prove a partial uniqueness of the solution. Moreover, with the support of numerical simulations, we show that in certain cases the solution is reliable and the reconstruction of the trend vector is quite accurate.
Resumo:
In this thesis the use of the Bayesian approach to statistical inference in fisheries stock assessment is studied. The work was conducted in collaboration of the Finnish Game and Fisheries Research Institute by using the problem of monitoring and prediction of the juvenile salmon population in the River Tornionjoki as an example application. The River Tornionjoki is the largest salmon river flowing into the Baltic Sea. This thesis tackles the issues of model formulation and model checking as well as computational problems related to Bayesian modelling in the context of fisheries stock assessment. Each article of the thesis provides a novel method either for extracting information from data obtained via a particular type of sampling system or for integrating the information about the fish stock from multiple sources in terms of a population dynamics model. Mark-recapture and removal sampling schemes and a random catch sampling method are covered for the estimation of the population size. In addition, a method for estimating the stock composition of a salmon catch based on DNA samples is also presented. For most of the articles, Markov chain Monte Carlo (MCMC) simulation has been used as a tool to approximate the posterior distribution. Problems arising from the sampling method are also briefly discussed and potential solutions for these problems are proposed. Special emphasis in the discussion is given to the philosophical foundation of the Bayesian approach in the context of fisheries stock assessment. It is argued that the role of subjective prior knowledge needed in practically all parts of a Bayesian model should be recognized and consequently fully utilised in the process of model formulation.
Resumo:
Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework.
Resumo:
We consider an obstacle scattering problem for linear Beltrami fields. A vector field is a linear Beltrami field if the curl of the field is a constant times itself. We study the obstacles that are of Neumann type, that is, the normal component of the total field vanishes on the boundary of the obstacle. We prove the unique solvability for the corresponding exterior boundary value problem, in other words, the direct obstacle scattering model. For the inverse obstacle scattering problem, we deduce the formulas that are needed to apply the singular sources method. The numerical examples are computed for the direct scattering problem and for the inverse scattering problem.
Resumo:
The current research proposed a conceptual design framework for airports to obtain flexible departure layouts based on passenger activity analysis obtained from Business Process Models (BPM). BPMs available for airport terminals were used as a design tool in the current research to uncover the relationships existing between spatial layout and corresponding passenger activities. An algorithm has been developed that demonstrates the applicability of the proposed design framework by obtaining relative spatial layouts based on passenger activity analysis. The generated relative spatial layout assists architects in achieving suitable alternative layouts to meet the changing needs of an airport terminal.
Resumo:
Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.
Resumo:
Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.
Resumo:
While performing a mission, multiple Unmanned Aerial Vehicles (UAVs) need to avoid each other to prevent collisions among them. In this paper, we design a collision avoidance algorithm to resolve the conflict among UAVs that are on a collision course while flying to heir respective destinations. The collision avoidance algorithm consist of each UAV that is on a collision course reactively executing a maneuver that will, as in `inverse' Proportional Navigation (PN), increase Line of Sight (LOS) rate between them, resulting in a `pulling out' of collision course. The algorithm is tested for high density traffic scenarios as well as for robustness in the presence of noise.
Resumo:
Among the iterative schemes for computing the Moore — Penrose inverse of a woll-conditioned matrix, only those which have an order of convergence three or two are computationally efficient. A Fortran programme for these schemes is provided.