987 resultados para ION BINDING


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)trans-6,13-dimethyl- 13-amino- 1,4,8,11 -tetraaza-cyclotetradecane (L-1) and 6-((anthracen-9-ylmethyl)-amino)trans-6,13 -dimethyl - 13 -amino- 1,4,8, 1 1-tetraaza-cyclotetradecane (L-2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2](2+), the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1](2+), the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha 1, alpha 2, alpha 1 beta and alpha 2 beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha 2 beta GlyR relative to the alpha 2 GlyR but not in the alpha 1 beta GlyR relative to the alpha 1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha 2 beta GlyR was transferred to the alpha 1 beta GlyR by the G2'A (alpha 1 to alpha 2 subunit) substitution. In addition, the alpha 1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha 1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral drug delivery is considered the most popular route of delivery because of the ease of administration, availability of a wide range of dosage forms and the large surface area for drug absorption via the intestinal membrane. However, besides the unfavourable biopharmaceutical properties of the therapeutic agents, efflux transporters such as Pglycoprotein (P-gp) and multiple resistance proteins (MRP) decrease the overall drug uptake by extruding the drug from the cells. Although, prodrugs have been investigated to improve drug partitioning by masking the polar groups covalently with pre-moieties promoting increased uptake, they present significant challenges including reduced solubility and increased toxicity. The current work investigates the use of amino acids as ion-pairs for three model drugs: indomethacin (weak acid), trimethoprim (weak base) and ciprofloxacin (zwitter ion) in an attempt to improve both solubility and uptake. Solubility was studied by salt formation while creating new routes for uptake across the membranes via amino acids transporter proteins or dipeptidyl transporters was the rationale to enhance absorption. New salts were prepared for the model drugs and the oppositely charged amino acids by freeze drying and they were characterised using FTIR, 1HNMR, DSC, SEM, pH solubility profile, solubility and dissolution. Permeability profiles were assessed using an in vitro cell based method; Caco-2 cells and the genetic changes occurring across the transporter genes and various pathways involved in the cellular activities were studied using DNA microarrays. Solubility data showed a significant increase in drug solubility upon preparing the new salts with the oppositely charged counter ions (ciprofloxacin glutamate salt exhibiting 2.9x103 fold enhancement when compared to the free drug). Moreover, permeability studies showed a 3 fold increase in trimethoprim and indomethacin permeabilities upon ion-pairing with amino acids and more than 10 fold when the zwitter ionic drug was paired with glutamic acid. Microarray data revealed that trimethoprim was absorbed actively via OCTN1 transporters while MRP7 is the main transporter gene that mediates its efflux. The absorption of trimethoprim from trimethoprim glutamic acid ion-paired formulations was affected by the ratio of glutamic acid in the formulation which was inversely proportional to the degree of expression of OCTN1. Interestingly, ciprofloxacin glutamic acid ion-pairs were found to decrease the up-regulation of ciprofloxacin efflux proteins (P-gp and MRP4) and over-express two solute carrier transporters; (PEPT2 and SLCO1A2) suggesting that a high aqueous binding constant (K11aq) enables the ion-paired formulations to be absorbed as one entity. In conclusion, formation of ion-pairs with amino acids can influence in a positive way solubility, transfer and gene expression effects of drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion channels are a large class of integral membrane proteins that allow for the diffusion of ions across a cellular membrane and are found in all forms of life. Pentameric ligand-gated ion channels (pLGICs) comprise a large family of proteins that include the nicotinic acetylcholine receptor (nAChR) and the γ-aminobutyric acid (GABA) receptor. These ion channels are responsible for the fast synaptic transmission that occurs in humans and as a result are of fundamental biological importance. pLGICs bind ligands (neurotransmitters), and upon ligand-binding undergo activation. The activation event causes an ion channel to enter a new physical state that is able to conduct ions. Ion channels allow for the flux of ions across the membrane through a pore that is formed upon ion channel activation. For pLGICs to function properly both ligand-binding and ion channel activation must occur. The ligand-binding event has been studied extensively over the past few decades, and a detailed mechanism of binding has emerged. During activation the ion channel must undergo structural rearrangements that allow the protein to enter a conformation in which ions can flow through. Despite this great and ubiquitous importance, a fundamental understanding of the ion channel activation mechanism and kinetics, as well as concomitant structural arrangements, remains elusive.

This dissertation describes efforts that have been made to temporally control the activation of ligand-gated ion channels. Temporal control of ion channel activation provides a means by which to activate ion channels when desired. The majority of this work examines the use of light to activate ion channels. Several photocages were examined in this thesis; photocages are molecules that release a ligand under irradiation, and, for the work described here, the released ligand then activates the ion channel. First, a new water-soluble photoacid was developed for the activation of proton-sensitive ion channels. Activation of acid-sensing ion channels, ASIC2a and GLIC, was observed only upon irradiation. Next, a variety of Ru2+ photocages were also developed for the release of amine ligands. The Ru2+ systems interacted in a deleterious manner with a representative subset of biologically essential ion channels. The rapid mixing of ion channels with agonist was also examined. A detection system was built to monitor ion channels activation in the rapid mixing experiments. I have shown that liposomes, and functionally-reconstituted ELIC, are not destroyed during the mixing process. The work presented here provides the means to deliver agonist to ligand-gated ion channels in a controlled fashion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity of dry protonated calcium alginate beads to sorb metals from an industrial effluent was studied and compared with a commercial ion-exchange resin (Lewatit TP 207). Both sorbents decreased zinc, nickel, iron and calcium concentrations in the effluent, and released sodium during treatment. Alginate beads removed lower amounts of heavy metals than the resin, but exhibited faster uptake kinetics. Zinc desorption from the sorbents was achieved in 30 minutes using 0.1 M HCl or 0.1 M H(2)SO(4). Desorption ratios with these acids varied between 90 and 100% for alginate, and 98 to 100% for the ion-exchange resin. Reusability tests with HCl showed that alginate beads can stand acid desorption and recover binding capacity. Overall, the comparison of dry protonated alginate beads with the resin supports the potential of the biosorbent for the treatment of industrial effluents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV-1 reverse transcriptase (RT) catalytically incorporates individual nucleotides into a viral DNA strand complementing an RNA or DNA template strand; the polymerase active site of RT adopts multiple conformational and structural states while performing this task. The states associated are dNTP binding at the N site, catalytic incorporation of a nucleotide, release of a pyrophosphate, and translocation of the primer 3′-end to the P site. Structural characterization of each of these states may help in understanding the molecular mechanisms of drug activity and resistance and in developing new RT inhibitors. Using a 38-mer DNA template-primer aptamer as the substrate mimic, we crystallized an RT/dsDNA complex that is catalytically active, yet translocation-incompetent in crystals. The ability of RT to perform dNTP binding and incorporation in crystals permitted obtaining a series of structures: (I) RT/DNA (P-site), (II) RT/DNA/AZTTP ternary, (III) RT/AZT-terminated DNA (N-site), and (IV) RT/AZT-terminated DNA (N-site)/foscarnet complexes. The stable N-site complex permitted the binding of foscarnet as a pyrophosphate mimic. The Mg2+ ions dissociated after catalytic addition of AZTMP in the pretranslocated structure III, whereas ions A and B had re-entered the active site to bind foscarnet in structure IV. The binding of foscarnet involves chelation with the Mg2+ (B) ion and interactions with K65 and R72. The analysis of interactions of foscarnet and the recently discovered nucleotide-competing RT inhibitor (NcRTI) α-T-CNP in two different conformational states of the enzyme provides insights for developing new classes of polymerase active site RT inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copper and cadmium complexation properties in natural sediment suspensions of reservoirs of the Tietê River were studied using the solid membrane copper and cadmium ion-selective electrodes. The complexation and the average conditional stability constants were determined under equilibrium conditions at pH=6.00 ± 0.05 in a medium of 1.0 mol L-1 sodium nitrate, using the Scatchard method. The copper and cadmium electrodes presented Nernstian behavior from 1x10-6 to 1x10-3 mol L-1 of total metal concentration. Scatchard graphs suggest two classes of binding sites for both metals. A multivariate study was done to correlate the reservoirs and the variables: complexation properties, size, total organic carbon, volatile acid sulfide, E II and pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Removable partial dentures (RPD) require different hygiene care, and association of brushing and chemical cleansing is the most recommended to control biofilm formation. However, the effect of cleansers has not been evaluated in RPD metallic components. The aim of this study was to evaluate in vitro the effect of different denture cleansers on the weight and ion release of RPD. MATERIAL AND METHODS: Five specimens (12x3 mm metallic disc positioned in a 38x18x4 mm mould filled with resin), 7 cleanser agents [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) (control)] and 2 cobalt-chromium alloys [DeguDent (DD), and VeraPDI (VPDI)] were used for each experimental situation. One hundred and eighty immersions were performed and the weight was analyzed with a high precision analytic balance. Data were recorded before and after the immersions. The ion release was analyzed using mass spectrometry with inductively coupled plasma. Data were analyzed by two-way ANOVA and Tukey HSD post hoc test at 5% significance level. RESULTS: Statistical analysis showed that CT and MI had higher values of weight loss with higher change in VPDI alloy compared to DD. The solutions that caused more ion release were NaOCl and MI. CONCLUSIONS: It may be concluded that 0.05% NaOCl and Medical Interporous tablets are not suitable as auxiliary chemical solutions for RPD care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloglucosidase enzyme was produced by Aspergillus niger NRRL 3122 from solid-state fermentation, using deffated rice bran as substrate. The effects of process parameters (pH, temperature) in the equilibrium partition coefficient for the system amyloglucosidase - resin DEAE-cellulose were investigated, aiming at obtaining the optimum conditions for a subsequent purification process. The highest partition coefficients were obtained using 0.025M Tris-HCl buffer, pH 8.0 and 25ºC. The conditions that supplied the highest partition coefficient were specified, the isotherm that better described the amyloglucosidase process of adsorption obtained. It was observed that the adsorption could be well described by Langmuir equation and the values of Qm and Kd estimated at 133.0 U mL-1 and 15.4 U mL-1, respectively. From the adjustment of the kinetic curves using the fourth-order Runge-Kutta algorithm, the adsorption (k1) and desorption (k2) constants were obtained through optimization by the least square procedure, and the values calculated were 2.4x10-3 mL U-1 min-1 for k1 and 0.037 min-1 for k2 .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of nine new [3-(disubstituted-phosphate)-4,4,4-trifluoro-butyl]-carbamic acid ethyl esters (phosphate-carbamate compounds) was obtained through the reaction of (4,4,4-trifluoro-3-hydroxybut-1-yl)-carbamic acid ethyl esters with phosphorus oxychloride followed by the addition of alcohols. The products were characterized by ¹H, 13C, 31P, and 19F NMR spectroscopy, GC-MS, and elemental analysis. All the synthesized compounds were screened for acetylcholinesterase (AChE) inhibitory activity using the Ellman method. All compounds containing phosphate and carbamate pharmacophores in their structures showed enzyme inhibition, being the compound bearing the diethoxy phosphate group (2b) the most active compound. Molecular modeling studies were performed to investigate the detailed interactions between AChE active site and small-molecule inhibitor candidates, providing valuable structural insights into AChE inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aqueous alkaline reaction of 1,3-bis(4-cyanopyridinium)propane dibromide, a reactant constituted of two pyridinium rings linked by a three-methylene bridge, generates a novel compound,1 -(4-cyano-2-oxo-1,2-dihydro-1-pyridyl)-3-(4-cyano-1,2-dihydro-1-pyridyl)propane. The reaction pathway is attributed to the proximity of the OH- ion inserted between two pyridinium moieties, which occurs only in bis(pyridinium) derivatives connected by short methylene spacers, where charge-conformational effects are important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bloodsucking parasites such as ticks have evolved a wide variety of immunomodulatory proteins that are secreted in their saliva, allowing them to feed for long periods of time without being detected by the host immune system. One possible strategy used by ticks to evade the host immune response is to produce proteins that selectively bind and neutralize the chemokines that normally recruit cells of the innate immune system that protect the host from parasites. We have identified distinct cDNAs encoding novel chemokine binding proteins (CHPBs), which we have termed Evasins, using an expression cloning approach. These CHBPs have unusually stringent chemokine selectivity, differentiating them from broader spectrum viral CHBPs. Evasin-1 binds to CCL3, CCL4, and CCL18; Evasin-3 binds to CXCL8 and CXCL1; and Evasin-4 binds to CCL5 and CCL11. We report the characterization of Evasin-1 and -3, which are unrelated in primary sequence and tertiary structure, and reveal novel folds. Administration of recombinant Evasin-1 and - 3 in animal models of disease demonstrates that they have potent antiinflammatory properties. These novel CHBPs designed by nature are even smaller than the recently described single-domain antibodies (Hollinger, P., and P. J. Hudson. 2005. Nat. Biotechnol. 23: 1126-1136), and may be therapeutically useful as novel antiinflammatory agents in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of [Ru(NO(2)) L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO) L(bpy) 2](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO2) L(bpy) 2]+ in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around-0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at-0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2)) L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mu mol L(-1) phenylephrine responded with relaxation in the presence of cis-[RuII(NO2) L(bpy) 2]+. The potential of rat aorta cells to metabolize cis-[RuII(NO(2)) L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[RuII(NO(2)) L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[RuII(NO(2)) L(bpy)(2)](+) complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d + Au, and Au + Au collisions at root(S)NN = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d + Au and peripheral Au + Au collisions. An additional structure is observed in central Au + Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta = 1.37 +/- 0.02(stat)(-0.07)(+0.06)(syst), independent of p perpendicular to.