986 resultados para IMMOBILIZED LACCASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sunflower trypsin inhibitor-1 (SFI-1), a natural 14-residue cyclic peptide, and some of its synthetic acyclic variants are potent protease inhibitors displaying peculiar inhibitory profiles. Here we describe the synthesis and use of affinity sorbents prepared by coupling SFTI-1 analogues to agarose resin. Chymotrypsinand trypsin-like proteases could then be selectively isolated from pancreatin; similarly, other proteases were obtained from distinct biological sources. The binding capacity of [Lys5]-SFTI-1-agarose for trypsin was estimated at over 10 mg/mL of packed gel. SFTI-1-based resins could find application either to improve the performance of current purification protocols or as novel protease-discovery tools in different areas of biological investigation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of culture conditions, especially the optimization of substrate constituents, is crucial for laccase production by solid fermentation. To develop an inexpensive optimized substrate formulation to produce high-activity laccase, a uniform design formulation experiment was devised. The solid fermentation of Trametes versicolor was performed with natural aeration, natural substrate pH (about 6.5), environmental humidity of 60% and two different temperature stages (at 37 °C for 3 days, and then at 30 °C for the next 17 days). From the experiment, a regression equation for laccase activity, in the form of a second-degree polynomial model, was constructed using multivariate regression analysis and solved with unconstrained optimization programming. The optimized substrate formulation for laccase production was then calculated. Tween 80 was found to have a negative effect on laccase production in solid fermentation; the optimized solid substrate formulation was 10.8% glucose, 27.7% wheat bran, 9.0% (NH4)2SO4, and 52.5% water. In a scaled-up verification of solid fermentation at a 10 kg scale, laccase activity from T. versicolor in the optimized substrate formulation reached 110.9 IU/g of dry mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 × 1010 g–1 was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in "natural" (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10—200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been increased interest in the use of immobilized enzymes in fruit juice industry for debittering of citrus fruit juices due to their high efficiency to remove bitter flavonoids. The structure of naringin, responsible for immediate bitterness, and of limonin, responsible for "delayed bitterness" has been discussed. This chapter also discusses various attempts that have been made to immobilize enzymes on an appropriate support so as to enable their use in debittering of citrus fruit juices. These include physicochemical and enzyme biotechnological approaches which makes the fruit juice more acceptable and cost effective to the consumer. Despite of high volume of production of citrus fruits and fruit juices, suitable processes to produce non-bitter citrus juice by immobilized enzymes technology has not yet commercialized globally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni2+-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular exoinulinase from Kluyveromyces marxianus YS-1, which hydrolyzes inulin into fructose, was immobilized on Duolite A568 after partial puriWcation by ethanol precipitation and gel exclusion chromatography on Sephadex G-100. Optimum temperature of immobilized enzyme was 55 °C, which was 5 °C higher than the free enzyme and optimal pH was 5.5. Immobilized biocatalyst retained more than 90% of its original activity after incubation at 60 °C for 3 h, whereas in free form its activity was reduced to 10% under same conditions, showing a signiWcant improvement in the thermal stability of the biocatalyst after immobilization. Apparent Km values for inulin, raYnose and sucrose were found to be 3.75, 28.5 and 30.7 mM, respectively. Activation energy (Ea) of the immobilized biocatalyst was found to be 46.8 kJ/mol. Metal ions like Co2+ and Mn2+ enhanced the activity, whereas Hg2+ and Ag2+ were found to be potent inhibitors even at lower concentrations of 1 mM. Immobilized biocatalyst was eVectively used in batch preparation of high fructose syrup from Asparagus racemosus raw inulin and pure inulin, which
yielded 39.2 and 40.2 g/L of fructose in 4 h; it was 85.5 and 92.6% of total reducing sugars produced, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 23.5-fold purified exoinulinase with a specific activity of 413 IU/mg and covalently immobilized on Duolite A568 has been used for the development of a continuous flow immobilized enzyme reactor for the hydrolysis of inulin. In a packed bed reactor containing 72 IU of exoinulinase from Kluyveromyces marxianus YS-1, inulin solution (5%, pH 5.5) with a flow rate of 4 mL/h was completely hydrolyzed at 55 °C. The reactor was run continuously for 75 days and its experimental half-life was 72 days under the optimized operational conditions. The volumetric productivity and fructose yield of the reactor were 44.5 g reducing sugars/L/h and 53.3 g/L, respectively. The hydrolyzed product was a mixture of fructose (95.8%) and glucose (4.2%) having an average fructose/glucose ratio of 24. An attempt has also been made to substitute pure inulin with raw Asparagus racemosus inulin to determine the operational stability of the developed reactor. The system remained operational only for 11 days, where 85.9% hydrolysis of raw inulin was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triacylglycerol concentrates of eicosapentaenoic and docosahexaenoic omega-3 fatty acids were synthesized either via transesterification or esterification of glycerol with the corresponding ethyl ester or free fatty acid concentrates, respectively. A newly developed food grade immobilized Candida antarctica lipase Β system using an Amberlite FPX-66 hydrophobic matrix, was compared with a commercially available non-food grade commercial system, for their ability to catalyze these reactions. For either system, the transesterification required higher temperature (90◦C) than esterification (70°C) to achieve maximum triacylglycerol yields. The newly developed immobilized system efficiently catalyzes the esterification of free fatty acids with glycerol and differs from the existing commercial system in that it is food grade and has a more uniform and larger particle distribution. The new system significantly improves flow in a packed bed reactor, enabling multiple reuse of the catalyst for up to 80 repeats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chromatographic capacity factors (log k‘) for 32 structurally diverse drugs were determined by high performance liquid chromatography (HPLC) on a stationary phase composed of phospholipids, the so-called immobilized artificial membrane (IAM). In addition, quantitative structure-retention relationships (QSRR) were developed in order to explain the dependence of retention on the chemical structure of the neutral, acidic, and basic drugs considered in this study. The obtained retention data were modeled by means of multiple regression analysis (MLR) and partial least squares (PLS) techniques. The structures of the compounds under study were characterized by means of calculated physicochemical properties and several nonempirical descriptors. For the carboxylic compounds included in the analysis, the obtained results suggest that the IAM-retention is governed by hydrophobicity factors followed by electronic effects due to polarizability in second place. Further, from the analysis of the results obtained of two developed quantitative structure-permeability studies for 20 miscellaneous carboxylic compounds, it may be concluded that the balance between polarizability and hydrophobic effects is not the same toward IAM phases and biological membranes. These results suggest that the IAM phases could not be a suitable model in assessing the acid-membrane interactions. However, it is not possible to generalize this observation, and further work in this area needs to be done to obtain a full understanding of the partitioning of carboxylic compounds in biological membranes. For the non-carboxylic compounds included in the analysis, this work shows that the hydrophobic factors are of prime importance for the IAM-retention of these compounds, while the specific polar interactions, such as electron pair donor−acceptor interactions and electrostatic interactions, are also involved, but they are not dominant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-education strength training has being shown to retain strength and muscle thickness in the immobilized contralateral limb. Corticospinal mechanisms have been proposed to underpin this phenomenon; however, no transcranial magnetic stimulation (TMS) data has yet been presented. This study used TMS to measure corticospinal responses following 3 weeks of unilateral arm training on the contralateral, immobilize arm. Participants (n = 28) were randomly divided into either immobilized strength training (Immob + train) immobilized no training (Immob) or control. Participants in the immobilized groups had their nondominant arm rested in a sling, 15 h/day for 3 weeks. The Immob + train group completed unilateral arm curl strength training, while the Immob and control groups did not undertake training. All participants were tested for corticospinal excitability, strength, and muscle thickness of both arms. Immobilization resulted in a group x time significant reduction in strength, muscle thickness and corticospinal excitability for the untrained limb of the Immob group. Conversely, no significant change in strength, muscle thickness, or corticospinal excitability occurred in the untrained limb of the Immob + train group. These results provide the first evidence of corticospinal mechanisms, assessed by TMS, underpinning the use of unilateral strength training to retain strength and muscle thickness following immobilization of the contralateral limb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A purified alkaline thermo-tolerant bacterial lipase from Bacillus cereus MTCC 8372 was immobilized on a Poly (MAc- co -DMA- cl -MBAm) hydrogel. The hydrogel showed approximately 94% binding capacity for lipase. The immobilized lipase (2.36 IU) was used to achieve esterification of myristic acid and isopropanol in n -heptane at 65 °C under continuous shaking. The myristic acid and isopropanol when used at a concentration of 100 mM each in n -heptane resulted in formation of isopropyl myristate (66.0 ± 0.3 mM) in 15 h. The reaction temperature below or higher than 65°C markedly reduced the formation of isopropyl myristate. Addition of a molecular sieve (3 Å × 1.5 mm) to the reaction mixture drastically reduced the ester formation. The hydrogel bound lipase when repetitively used to perform esterification under optimized conditions resulted in 38.0 ± 0.2 mM isopropyl myristate after the 3 rd cycle of esterification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide range of fatty acid esters can be synthesized by esterification and transesterification reactions catalyzed by lipases in non-aqueous systems. In the present study, immobilization of a purified alkaline extra-cellular lipase of Bacillus cereus MTCC 8372 by adsorption on diatomaceous earth (celite) for synthesis of ethyl acetate via transesterification route was investigated. B. cereus lipase was deposited on celite (77% protein binding efficiency) by direct binding from aqueous solution. Immobilized lipase was used to synthesis of ethyl acetate from vinyl acetate and ethanol in n -nonane. Various reaction conditions, such as biocatalyst concentration, substrates concentration, choices of solvents ( n -alkanes), incubation time, temperature, molecular sieves (3Å × 1.5 mm), and water activity(a w ), were optimized. The immobilized lipase (25 mg/ml) was used to perform transesterification in n -alkane(s) that resulted in approximately 73.7 mM of ethyl acetate at 55 °C in n -nonane under shaking (160 rpm) after 15 h, when vinyl acetate and ethanol were used in a equimolar ratio (100 mM each). Addition of molecular sieves (3Å × 1.5 mm) as well as effect of water activity of saturated salt solutions (KI, KCl and KNO 3 ) to the transesterification efficiency has inhibitory effect. Batch operational stability tests indicated that immobilized lipase had retained 50% of its original catalytic activity after four consecutive batches of 15 h each.