973 resultados para Human Genome
Resumo:
293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.
Resumo:
The enormous amount of information generated through sequencing of the human genome has increased demands for more economical and flexible alternatives in genomics, proteomics and drug discovery. Many companies and institutions have recognised the potential of increasing the size and complexity of chemical libraries by producing large chemical libraries on colloidal support beads. Since colloid-based compounds in a suspension are randomly located, an encoding system such as optical barcoding is required to permit rapid elucidation of the compound structures. We describe in this article innovative methods for optical barcoding of colloids for use as support beads in both combinatorial and non-combinatorial libraries. We focus in particular on the difficult problem of barcoding extremely large libraries, which if solved, will transform the manner in which genomics, proteomics and drug discovery research is currently performed.
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.
Resumo:
Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
Resumo:
We have developed a computational strategy to identify the set of soluble proteins secreted into the extracellular environment of a cell. Within the protein sequences predominantly derived from the RIKEN representative transcript and protein set, we identified 2033 unique soluble proteins that are potentially secreted from the cell. These proteins contain a signal peptide required for entry into the secretory pathway and lack any transmembrane domains or intracellular localization signals. This class of proteins, which we have termed the mouse secretome, included >500 novel proteins and 92 proteins
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Tese de Doutoramento em Ciências da Literatura (Especialidade em Literatura Comparada)
Resumo:
A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.
Resumo:
BACKGROUND: Cancer/testis (CT) genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. RESULTS: To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes) genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. CONCLUSION: Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻&supl;³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Resumo:
Developments in the field of neuroscience have created a high level of interest in the subject of adolescent psychosis, particularly in relation to prediction and prevention. As the medical practice of adolescent psychosis and its treatment is characterised by a heterogeneity which is both symptomatic and evolutive, the somewhat poor prognosis of chronic development justifies the research performed: apparent indicators of schizophrenic disorders on the one hand and specific endophenotypes on the other are becoming increasingly important. The significant progresses made on the human genome show that the genetic predetermination in current psychiatric pathologies is complex and subject to moderating effects and there is therefore significant potential for nature-nurture interactions (between the environment and the genes). The road to be followed in researching the phenotypic expression of a psychosis gene is long and winding and is susceptible to many external influences at various levels with different effects. Neurobiological, neurophysiological, neuropsychological and neuroanatomical studies help to identify endophenotypes, which allow researchers to create identifying "markers" along this winding road. The endophenotypes could make it possible to redefine the nosological categories and enhance understanding of the physiopathology of schizophrenia. In a predictive approach, large-scale retrospective and prospective studies make it possible to identify risk factors, which are compatible with the neurodevelopmental hypothesis of schizophrenia. However, the predictive value of such markers or risk indicators is not yet sufficiently developed to offer a reliable early-detection method or possible schizophrenia prevention measures. Nonetheless, new developments show promise against the background of a possible future nosographic revolution, based on a paradigm shift. It is perhaps on the basis of homogeneous endophenotypes in particular that we will be able to understand what protects against, or indeed can trigger, psychosis irrespective of the clinical expression or attempts to isolate the common genetic and biological bases according to homogeneous clinical characteristics, which have to date, proved unsuccessful
Resumo:
L’èxit del Projecte Genoma Humà (PGH) l’any 2000 va fer de la “medicina personalitzada” una realitat més propera. Els descobriments del PGH han simplificat les tècniques de seqüenciació de tal manera que actualment qualsevol persona pot aconseguir la seva seqüència d’ADN complerta. La tecnologia de Read Mapping destaca en aquest tipus de tècniques i es caracteritza per manegar una gran quantitat de dades. Hadoop, el framework d’Apache per aplicacions intensives de dades sota el paradigma Map Reduce, resulta un aliat perfecte per aquest tipus de tecnologia i ha sigut l’opció escollida per a realitzar aquest projecte. Durant tot el treball es realitza l’estudi, l’anàlisi i les experimentacions necessàries per aconseguir un Algorisme Genètic innovador que utilitzi tot el potencial de Hadoop.
Resumo:
Many significant advances in dermatology were published during 2009, focussing on infectious diseases, inflammatory disorders and oncology. Molecular medicine, as a result of the human genome project, also modifies the field of dermatology. Bioinformatics and biotechnology revolutionize the daily clinical practice in dermatology. A change of paradigm occurs notably in infectious diseases.
Resumo:
We analyze here the relation between alternative splicing and gene duplication in light of recent genomic data, with a focus on the human genome. We show that the previously reported negative correlation between level of alternative splicing and family size no longer holds true. We clarify this pattern and show that it is sufficiently explained by two factors. First, genes progressively gain new splice variants with time. The gain is consistent with a selectively relaxed regime, until purifying selection slows it down as aging genes accumulate a large number of variants. Second, we show that duplication does not lead to a loss of splice forms, but rather that genes with low levels of alternative splicing tend to duplicate more frequently. This leads us to reconsider the role of alternative splicing in duplicate retention.
Current millennium biotechniques for biomedical research on parasites and host-parasite interactions
Resumo:
The development of biotechnology in the last three decades has generated the feeling that the newest scientific achievements will deliver high standard quality of life through abundance of food and means for successfully combating diseases. Where the new biotechnologies give access to genetic information, there is a common belief that physiological and pathological processes result from subtle modifications of gene expression. Trustfully, modern genetics has produced genetic maps, physical maps and complete nucleotide sequences from 141 viruses, 51 organelles, two eubacteria, one archeon and one eukaryote (Saccharomices cerevisiae). In addition, during the Centennial Commemoration of the Oswaldo Cruz Institute the nearly complete human genome map was proudly announced, whereas the latest Brazilian key stone contribution to science was the publication of the Shillela fastidiosa genomic sequence highlythed on a Nature cover issue. There exists a belief among the populace that further scientific accomplishments will rapidly lead to new drugs and methodological approaches to cure genetic diseases and other incurable ailments. Yet, much evidence has been accumulated, showing that a large information gap exists between the knowledge of genome sequence and our knowledge of genome function. Now that many genome maps are available, people wish to know what are we going to do with them. Certainly, all these scientific accomplishments will shed light on many more secrets of life. Nevertheless, parsimony in the weekly announcements of promising scientific achievements is necessary. We also need many more creative experimental biologists to discover new, as yet un-envisaged biotechnological approaches, and the basic resource needed for carrying out mile stone research necessary for leading us to that "promised land"often proclaimed by the mass media.