967 resultados para Host immune effectors
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Chlorhexidine, even at low concentrations, is toxic for a variety of eukaryotic cells; however, its effects on host immune cells are not well known. We evaluated in vitro chlorhexidine-induced cytotoxicity and its effects on reactive oxygen/nitrogen intermediate induction by murine peritoneal macrophages. Thioglycollate-induced cells were obtained from Swiss mice by peritoneal lavage with 5 ml of 10 mM phosphate-buffered saline, washed twice and resuspended (10(6) cells/ml) in appropriate medium for each test. Cell preparations contained more than 95% macrophages. The cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the presence of hydrogen peroxide (H2O2) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively. The midpoint cytotoxicity values for 1- and 24-h exposures were 61.12 ± 2.46 and 21.22 ± 2.44 µg/ml, respectively. Chlorhexidine did not induce synthesis or liberation of reactive oxygen/nitrogen intermediates. When macrophages were treated with various sub-toxic doses for 1 h (1, 5, 10, and 20 µg/ml) and 24 h (0.5, 1, and 5 µg/ml) and stimulated with 200 nM phorbol myristate acetate (PMA) solution, the H2O2 production was not altered; however, the NO production induced by 10 µg/ml lipopolysaccharide (LPS) solution varied from 14.47 ± 1.46 to 22.35 ± 1.94 µmol/l and 13.50 ± 1.42 to 20.44 ± 1.40 µmol/l (N = 5). The results showed that chlorhexidine has no immunostimulating activity and sub-toxic concentrations did not affect the response of macrophages to the soluble stimulus PMA but can interfere with the receptor-dependent stimulus LPS.
Resumo:
Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, the most prevalent deep mycosis in Latin America. Production of eicosanoids, including prostaglandins and leukotrienes, during fungal infections is theorized to play a critical role on fungal survival and/or growth as well as on host immune response modulation. Host cells are one source of these mediators; however another potential source may be the fungus itself. The purpose of our study was to assess whether P. brasiliensis strains with different degree of virulence (Pb18, Pb265, PbBT79, Pb192) produce both, prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)). Moreover, we asked if P. brasiliensis can use exogenous sources of arachidonic acid (AA), as well as metabolic pathways dependent on cyclooxygenase (COX) and lipoxygenase (5-LO) enzymes, for PGE(2) and LTB(4) production, respectively. Finally, a possible association between these eicosanoids and fungus viability was assessed. We demonstrated, using ELISA assays, that all P. brasiliensis strains, independently of their virulence, produce high PGE(2) and LTB(4) levels after a 4-hour culture, which were reduced after 8 hours. However, in both culture times, higher eicosanoids levels were detected when culture medium was supplemented with exogenous AA. Differently, treatment with indomethacin, a COX inhibitor, or MK886, a 5-LO inhibitor, induces a reduction on PGE(2) and LTB(4) levels, respectively, as well as in fungus viability. The data provide evidence that P. brasiliensis is able to metabolize either endogenous or exogenous AA by pathways that depend on COX and 5-LO enzymes for producing, respectively, PGE(2) and LTB(4) that are critical for its viability.
Resumo:
The production of prostaglandins (PGs) during fungal infections could be an important suppressor factor of host immune response. Host cells are one source of prostaglandin E-2 (PGE(2)); however another potential source of PGE(2) is the fungal pathogen itself. Thus, both host and fungal PGE2 production is theorized to play a role in pathogenesis, being critical for growth of the fungus and to modulate the host immune response. The purpose of this work was to investigate if high and low virulent strains of Paracoccidioides brasiliensis have the capacity to produce PGE(2) in vitro, and if this production was related to the fungal growth. The results demonstrated that both strains of P. brasiliensis produce high levels of PGE(2) and the treatment with indomethacin, a cyclooxygenase inhibitor, significantly reduced the production of this mediator, as well as the viability of the fungus. Thus, our data indicate that PGE(2) is produced by P. brasiliensis by a cyclooxygenase-dependent metabolic pathway, and its production is required for fungal survival. This discovery reveals an important factor that has potentially great implications for understanding the mechanisms of immune deviation during infection.
Resumo:
Dogs are the main domestic reservoirs of L. (L.) chagasi. Once in the vertebrate host, the parasite can cause visceral leishmaniasis, which can also be transmitted to humans. Cytokines are key elements of the host immune response against Leishmania spp. To investigate whether tumor necrosis factor (TNF)-alpha, interleukin (IL)-4 and IL-10 are associated with pattern infection in dogs, these cytokines were quantified in the spleen and liver of dogs naturally infected with L. (L.) chagasi, with or without clinical manifestations, and their levels were correlated with the parasite load verified in these organs. A total of 40 adult dogs naturally infected with L. (L.) chagasi were assessed, together with 12 uninfected control dogs. Samples from spleen and liver were used to determine the cytokine levels by capture ELISA and for quantifying parasite load by real-time PCR. Statistical analysis was performed using the minimum Chi square method and group means were compared using the Tukey test. TNF-alpha, IL-4 and IL-10 levels in infected dogs were higher than in control groups; the liver was the main cytokine-producing organ during infection. The level of splenic TNF-alpha showed correlation with parasite load and may represent an important marker for infection process evolution, with the participation of IL-10. These results may contribute to a clearer understanding of the immune response in dogs infected with L. (L.) chagasi, which may lead to the development of prophylactic or preventive measures for these animals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Periodontal disease initiation and progression occurs as a consequence of the host immune inflammatory response to oral pathogens. The innate and acquired immune systems are critical for the proper immune response. LPS, an outer membrane constituent of periodontal pathogenic bacteria, stimulates the production of inflammatory cytokines IL-1 beta TNF alpha IL-6 and RANKL either directly or indirectly. In LPS-stimulated cells, the induction of cytokine expression requires activation of several signaling pathways including the p38 MAPK pathway. This review will discuss the significance of the p38 MAPK pathway in periodontal disease progression and the potential therapeutic consequences of pharmacological antagonism of this pathway in the treatment of periodontal diseases.
Resumo:
Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent deep mycosis in Latin America. Production of eicosanoids during fungal infections plays a critical role on fungal biology as well as on host immune response modulation. The purpose of our study was to assess whether P. brasiliensis strains with different degree of virulence (Pb18, Pb265, Bt79, Pb192) produce prostaglandin E-x (PGE(x)). Moreover, we asked if P. brasiliensis could use exogenous sources of arachidonic acid (AA), as well as metabolic pathways dependent on cyclooxygenase (COX) enzyme, as reported for mammalian cells. A possible association between this prostanoid and fungus viability was also assessed. Our results showed that all strains, independently of their virulence, produce high PGE(x) levels on 4 h culture that were reduced after 8 h. However, in both culture times, higher prostanoid levels were detected after supplementation of medium with exogenous AA. Treatment with indomethacin, a COX inhibitor, induced a reduction on PGEx, as well as in fungus viability. The data provide evidence that P. brasiliensis produces prostaglandin-like molecules by metabolizing either endogenous or exogenous AA. Moreover, the results suggest the involvement of these mediators on fungal viability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Characterization of the excretory/secretory products of Dermatobia hominis larvae, the human bot fly
Resumo:
Proteolytic activity in excretory/secretory products (ESP) of first- (L1), second- (L2) and third-instar (L3) larvae of Dermatobia hominis was analyzed through gelatin-gel and colorimetric enzyme assays with the chromogenic substrates azocasein and BApNA. The functional characterization of proteases was based on inhibition assays including synthetic inhibitors. ESP were obtained from new-hatched larvae reared in the laboratory and from second- and third-instar larvae removed from naturally infested cattle. Gelatin-gel analysis evidenced few bands of proteolysis, predominantly of high apparent molecular masses, in ESP of L1, whereas in the gel of L2 and U ESP there was a wide range of proteolytic activity most of them not resolved in a single species. Azocasein assays revealed a progressive increase of protease activity from first- to third-instar larvae. Protease inhibitor assays revealed a predominance of metalloproteases in L1 ESP that could be related to a skin penetration process and to a diversion of host immune response. The predominance of serine proteases in L2 and L3 and the great tryptic activity presented by L3 ESP were attributed to an increasing trophic activity by the growing larvae, since the viability of adult flies strictly depends on larval abilities to assimilate nutrients from the host. Taking together, these results suggest that Dematobia larvae secrete/excrete different proteases that may be related to diverse functions during host penetration and infestation, which reinforces the relevance of the study of such proteolytic enzymes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Six cattle that had earlier exposure to Dermatobia hominis were infested experimentally with first-instar larvae of the parasite. Skin biopsies taken at intervals were studied in wax and in plastic sections. The avidin-biotin-peroxidase method was used to detect the presence and localization of host immunoglobulins (Igs) G and M and antigens of first and second instar larvae of Dermatobia hominis. The larvae penetrated actively through the skin and migrated towards the subcutaneous tissues. The great numbers of eosinophils suggest that they are the most important cell in mediating damage to D.hominis larvae. The immunoglobulins bound only to dead or moulting larvae in which access to binding sites may have been altered. This could represent a morphological manifestation of a mechanism that protects larvae from the host immune response. Large amounts of soluble antigens detected along the fistulous tract may be important in the maintenance of this tract by disturbing the normal cicatrization process.
Resumo:
A severe case of juvenile paracoccidioidomycosis (PCM), manifested as cholestatic jaundice, lymphnode enlargement and an unusual form of polyserositis, associated with portal hypertension secondary to schistosomiasis, as well as bacteremias caused by E. coli and S. aureus and post-transfusional hepatitis C is reported. Temporary unresponsiveness of in vivo and in vitro cellular immune responses to P. brasiliensis were registered. The authors discuss the possible interference of either agent in the host immune response, thus explaining the severity of PCM in the present case.
Resumo:
The 43,000-molecular-weight (43K) soluble glycoprotein was detected in sera of patients with paracoccidioidomycosis by the immunoblot technique by using as the probe rabbit monospecific antisera to this fraction. The 43K antigen was present before treatment in sera of patients with the acute (juvenile) form; it started to disappear from circulation after 10 months of chemotherapy, and it was undetectable afer 2 years of treatment. In the chronic cases, the 43K antigen was detected in patients without treatment, and it was absent in the healed cases. The detection of the 43K protein specific to Paracoccidioides brasiliensis may be important for its diagnostic value as well as for modulation of the host immune response.