915 resultados para HIERARCHICAL STRUCTURE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper focuses on two basic issues: the anxiety-generating nature of the interpreting task and the relevance of interpreter trainees’ academic self-concept. The first has already been acknowledged, although not extensively researched, in several papers, and the second has only been mentioned briefly in interpreting literature. This study seeks to examine the relationship between the anxiety and academic self-concept constructs among interpreter trainees. An adapted version of the Foreign Language Anxiety Scale (Horwitz et al., 1986), the Academic Autoconcept Scale (Schmidt, Messoulam & Molina, 2008) and a background information questionnaire were used to collect data. Students’ t-Test analysis results indicated that female students reported experiencing significantly higher levels of anxiety than male students. No significant gender difference in self-concept levels was found. Correlation analysis results suggested, on the one hand, that younger would-be interpreters suffered from higher anxiety levels and students with higher marks tended to have lower anxiety levels; and, on the other hand, that younger students had lower self-concept levels and higher-ability students held higher self-concept levels. In addition, the results revealed that students with higher anxiety levels tended to have lower self-concept levels. Based on these findings, recommendations for interpreting pedagogy are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Taxonomies have gained a broad usage in a variety of fields due to their extensibility, as well as their use for classification and knowledge organization. Of particular interest is the digital document management domain in which their hierarchical structure can be effectively employed in order to organize documents into content-specific categories. Common or standard taxonomies (e.g., the ACM Computing Classification System) contain concepts that are too general for conceptualizing specific knowledge domains. In this paper we introduce a novel automated approach that combines sub-trees from general taxonomies with specialized seed taxonomies by using specific Natural Language Processing techniques. We provide an extensible and generalizable model for combining taxonomies in the practical context of two very large European research projects. Because the manual combination of taxonomies by domain experts is a highly time consuming task, our model measures the semantic relatedness between concept labels in CBOW or skip-gram Word2vec vector spaces. A preliminary quantitative evaluation of the resulting taxonomies is performed after applying a greedy algorithm with incremental thresholds used for matching and combining topic labels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes the joint use of the AHP (Analytic Hierarchy Process) and the ICB (IPMA Competence Baseline), as a tool for the decision-making process of selecting the most suitable managers for projects. A hierarchical structure, comprising the IPMA’s ICB 3.0 contextual, behavioural and technical competence elements, is constructed for the selection of project managers. It also describes the AHP implementation, illustrating the whole process with an example using all the 46 ICB competence elements as model criteria. This tool can be of high interest to decision-makers because it allows comparing the candidates for managing a project using a systematic and rigorous process with a rich set of proven criteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, trough the literature review, there were identified five broad suppliers selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. Thereafter, a survey was elaborated and companies were contacted in order to answer which factors have more relevance in their decisions to choose the suppliers. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Simple Multi-Attribute Rating Technique (SMART). The result of the research undertaken by the authors is a reference model that represents a decision making support for the suppliers/partners selection process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Contabilidade e Gestão de Instituições Financeiras

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To investigate whether low perceived organisational injustice predicts heavy drinking among employees. Methods: Data from the prospective occupational cohort study, the 10-Town Study, related to 15 290 Finnish public sector local government employees nested in 2432 work units, were used. Non-drinkers were excluded. Procedural, interactional and total organisational justice, heavy drinking (>=210 g of absolute alcohol per week) and other psychosocial factors were determined by means of questionnaire in 2000-2001 (phase 1) and 2004 (phase 2). Multilevel logistic regression analyses taking into account for the hierarchical structure of the data were conducted and adjustments were made for sex, age, socio-economic position, marital status, baseline heavy drinking, psychological distress and other psychosocial risk factors such as job strain and effort/reward imbalance. Results: After adjustments, participants who reported low procedural justice at phase 1 were about 1.2 times more likely to be heavy drinkers at phase 2 compared with their counterparts with high justice. Low perceived justice in interpersonal treatment and low perceived total organisational justice were associated with an elevated prevalence of heavy drinking only in the socio-demographics adjusted model. Conclusions: This is the first longitudinal study to show that low procedural justice is weakly associated with an increased likelihood of heavy drinking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM: This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. MATERIALS AND METHODS: A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. RESULTS: The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. CONCLUSIONS: This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computer-Based Learning systems of one sort or another have been in existence for almost 20 years, but they have yet to achieve real credibility within Commerce, Industry or Education. A variety of reasons could be postulated for this, typically: - cost - complexity - inefficiency - inflexibility - tedium Obviously different systems deserve different levels and types of criticism, but it still remains true that Computer-Based Learning (CBL) is falling significantly short of its potential. Experience of a small, but highly successful CBL system within a large, geographically distributed industry (the National Coal Board) prompted an investigation into currently available packages, the original intention being to purchase the most suitable software and run it on existing computer hardware, alongside existing software systems. It became apparent that none of the available CBL packages were suitable, and a decision was taken to develop an in-house Computer-Assisted Instruction system according to the following criteria: - cheap to run; - easy to author course material; - easy to use; - requires no computing knowledge to use (as either an author or student) ; - efficient in the use of computer resources; - has a comprehensive range of facilities at all levels. This thesis describes the initial investigation, resultant observations and the design, development and implementation of the SCHOOL system. One of the principal characteristics c£ SCHOOL is that it uses a hierarchical database structure for the storage of course material - thereby providing inherently a great deal of the power, flexibility and efficiency originally required. Trials using the SCHOOL system on IBM 303X series equipment are also detailed, along with proposed and current development work on what is essentially an operational CBL system within a large-scale Industrial environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.