863 resultados para GLUTATHIONE-PEROXIDASE
Resumo:
Studies report that the pathophysiological mechanism of diabetes complications is associated with increased production of Reactive Oxygen Species (ROS)-induced by hyperglycemia and changes in the capacity the antioxidant defense system. In this sense, the aim of this study was to evaluate changes in the capacity of antioxidant defense system, by evaluating antioxidant status, gene expression and polymorphisms in the genes of GPx1, SOD1 and SOD2 in children, adolescents and young adults with type 1 diabetes. We studied 101 individuals with type 1 diabetes (T1D) and 106 normoglycemic individuals (NG) aged between 6 and 20 years. Individuals with type 1 diabetes were evaluated as a whole group and subdivided according to glycemic control in DM1G good glycemic control and DM1P poor glycemic control. Glycemic and metabolic control was evaluate by serum glucose, glycated hemoglobin, triglycerides, total cholesterol and fractions (HDL and LDL). Renal function was assessed by measurement of serum urea and creatinine and albumin-to-creatinine ratio (ACR) in spot urine. Antioxidant status was evaluate by content of reduced glutathione (GSH) in whole blood and the activity of erythrocyte enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). We also analyzed gene expression and gene polymorphisms of GPx1 (rs1050450), SOD1 (rs17881135) and SOD2 (rs4880) by the technique of real-time PCR (Taqman®). Most individuals with DM1 (70.3%) had poor glycemic control (glycated hemoglobin> 8%). Regarding the lipid profile, individuals with type 1 diabetes had significantly elevated total cholesterol (p <0.001) and LDL (p <0.000) compared to NG; for triglycerides only DM1NC group showed significant increase compared to NG. There was an increase in serum urea and RAC of individuals with DM1 compared to NG. Nine individuals with type 1 diabetes showed microalbuminuria (ACR> 30 mg / mg). There was a decrease in GSH content (p = 0.006) and increased erythrocyte GPx activity (p <0.001) and SOD (p <0.001) in DM1 group compared to NG. There was no significant difference in the expression of GPx1 (p = 0.305), SOD1 (.365) and SOD2 (0.385) between NG and DM1. The allele and genotype frequencies of the polymorphisms studied showed no statistically significant difference between the groups DM1 and NG. However, the GPx1 polymorphism showed the influence of erythrocyte enzyme activity. There was a decrease in GPx activity in individuals with type 1 diabetes who had a polymorphic variant T (p = 0.012). DM1 patients with the polymorphic variant G (AG + GG) for polymorphism of SOD2 (rs4880) showed an increase in the RAC (p <0.05). The combined data suggest that glucose control seems to be the predominant factor for the emergence of changes in lipid profile, renal function and antioxidant system, but the presence of the polymorphisms studied may partly contribute to the onset of complications
Resumo:
Alpha-lipoic acid (ALA) is a potent antioxidant with favourable anti-inflammatory, metabolic and endothelial effects, and has been widely investigated due to its potential against cardiovascular risk factors. This study aimed to evaluate the effect of oral ALA supplementation on oxidative stress biomarkers, inflammation and cardiovascular risk factors in patients with hypertension. This is a double-blind placebo-controlled randomized clinical trial, where the intervention was evaluated prospectively comparing results in both groups. The sample consisted of 64 hypertensive patients who were randomly distributed into ALA group (n = 32), receiving 600 mg / day ALA for twelve weeks and control group (n = 32), receiving placebo for the same period. The following parameters were evaluated before and after intervention: lipid peroxidation, content of reduced glutathione (GSH), enzymatic activities of glutathione peroxidase (GPx) and superoxide dismustase, ultrasensitive C-reactive protein (hs-CRP), triglycerides, total cholesterol and fractions, fasting glucose and anthropometric indicators. There was a statistically significant reduction (p <0.05) in serum concentrations of total cholesterol, very low density lipoprotein (VLDL), high density lipoprotein (HDL), triglycerides and blood glucose. There was a reduction in body weight and waist, abdominal and hip circumferences in the group that received ALA. In addition, there was a statistically significant increase (p <0.05) in the contents of reduced glutathione (GSH) and glutathione peroxidase (GPx) in the group receiving ALA. Oral administration of ALA appears to be a valuable adjuvant therapy, which may contribute to decrease the damage caused by oxidative stress and other risk factors associated with the atherosclerotic process
Resumo:
Dietary modifications may significantly reduce cardiovascular disease (CVD) risk factors, including cholesterol and atherosclerosis. The present study addressed the effects of the crude extract from the pulp fruit of Tamarindus indica L. on lipid serum levels and early atherosclerotic lesions in hypercholesterolemic hamsters in vivo, and the extract's antioxidant action, in vitro. Animals were fed on either chow or atherogenic diet during 10 weeks and concomitantly received either water or T indica L. extract for drinking. Treatment of hypercholesterolemic hamsters with the T. indica pulp fruit extract (5%) led to a decrease in the levels of serum total cholesterol (50%), non-HDL cholesterol (73%) and triglyceride (60%), and to an increase of high-density lipoprotein (HDL) cholesterol levels (61%). In vitro, the extract presented radical scavenging ability, as assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals assays, and led to decreased lipid peroxidation in serum, as assessed by the thiobarbituric acid reactive substances (TBARS) assay. In vivo, the extract improved the efficiency of the antioxidant defense system, as assessed by the superoxide dismutase, catalase and glutathione peroxidase activities. Together these results indicate the potential of tamarind extracts in diminishing the risk of atherosclerosis development in humans. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Purpose. There is considerable evidence that cellular oxidative stress caused by hyperglycemia plays an important role in the genesis and evolution of chronic diabetic lesions. In this study, we determined the effectiveness of pancreas transplantation (PT) in preventing the imbalance caused by excessive production of reactive oxygen species over antioxidant defenses in lungs of rats rendered diabetic by alloxan injection.Methods. Sixty inbred male Lewis rats, weighing 250-280 g, were randomly assigned to 3 experimental groups: NC, 20 nondiabetic control rats; DC, 20 untreated diabetic control rats; and PT, 20 diabetic rats that received syngeneic PT from normal donor Lewis rats. Each group was further divided into 2 subgroups of 10 rats each which were killed after 4 and 12 weeks of follow-up. Plasma glucose, glycosylated hemoglobin, and insulin levels were determined in all rats. Lipid hydroperoxide (LPO) concentrations and enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were measured in the pulmonary tissue of all rats.Results. The DC rats showed elevated blood glucose and glycosylated hemoglobin levels, with insulin blood levels significantly lower than the NC rats (P < .001). They also showed significantly increased LPO concentrations in the lungs (P < .01) after 4 and 12 weeks of follow-up. In contrast, SOD, CAT, and GSH-Px antioxidant activities were significantly reduced in these periods (P < .01) 12 weeks after diabetes induction. Successful PT corrected all clinical and metabolic changes in the diabetic rats, with sustained normoglycemia throughout the study. Excessive lung LPO production and low SOD, CAT, and GSH-Px antioxidant activities were already back to normal 4 weeks after PT.Conclusion. PT can control oxidative stress in pulmonary tissue of diabetic rats. It may be the basis for preventing chronic diabetic lesions in lungs.
Resumo:
Purpose. Oxidative stress is one of the most important mechanisms to explain genesis of the complications in the chronic progression of diabetes. In this investigation we studied the effects of pancreas transplantation (PT) on the imbalance caused by excessive production of free oxygen radicals by antioxidant defenses of rats with serious chronic hyperglycemia induced by alloxan.Methods. Ninety inbred male Lewis rats were randomly distributed into three groups: NC-30 nondiabetic controls; DC-30 diabetic controls without any treatment; PT-30 diabetic rats undergoing syngeneic PT from normal donor Lewis rats. Each experimental group was then split into three subgroups of 10 animals for sacrifice after 1, 3, or 6 months. Clinical and laboratory parameters from all rats as well as lipid hydroperoxide (LPO) concentrations and renal tissue enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were recorded for all rats.Results. Successful PT corrected clinical and laboratory alterations in diabetic rats with sustained normoglycemia throughout the study. A significant increase in LPO concentration and a marked reduction in SOD and CAT enzyme activity were observed in DC rats; there was no significant variation in renal tissue GSH-Px in this group. However, alterations in DC rats were completely restored from 1st month after PT; all evaluated enzyme levels did not significantly differ (P < .01) from those in NC controls.Conclusion. Successful PT controlled cellular oxidative stress in diabetic kidneys, which may prevent chronic lesions.
Resumo:
To study the effects of diclofenac, a nonselective nonsteroidal anti-inflammatory drug (NSAID), on lipid profile, oxidized low-density-lipoprotein (Ox-LDL), serum antioxidant defenses and markers of oxidative stress, male Wistar rats were divided into two groups (n = 10): (C) receiving intramuscularly a single daily dose of saline (NaCl 0.9%), and (AI) receiving intramuscularly a single daily dose of 10 mg/kg diclofenac sodium (C14H10C12NNaO2). After 28 days diclofenac-treated rats had lower Ox-LDL, apoprotein B (apo-B), apo-B/LDL-cholesterol and lipid hydroperoxide than C. Total antioxidant substances and superoxide dismutase were increased in diclofenac-treated rats, while no significant changes were observed in catalase, glutathione peroxidase and nitric oxide. A perincubation test done to examine the possibility of mechanism-based activation showed that diclofenac had no effect on maximal superoxide dismutase velocity, but significantly reduced the Michaelis-Menten (K-M) constant, indicating that diclofenac induced SOD activation increasing substrate linkage affinity to the enzyme-catalytic site. In conclusion, diclofenac had beneficial effects decreasing Ox-LDL and improving antioxidant defense. It appears that the application of this agent may be feasible and beneficial for serum antioxidant protection, which certainly would bring new insights on dyslipidemia control. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to evaluate the effect of Ginkgo biloba treatment (EGb 761, 200 mg kg-1 day-1) administered from day 0 to 20 of pregnancy on maternal reproductive performance and on the maternal and fetal liver antioxidant systems of streptozotocin-induced diabetic Wistar rats. on day 21 of pregnancy, the adult rats (weighing approximately 250 ± 50 g, minimum number = 13/group) were anesthetized to obtain maternal and fetal liver samples for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and total glutathione (GSH-t) determinations. The uterus was weighed with its contents. The diabetic (G3) and treated diabetic (G4) groups of rats presented significant maternal hyperglycemia, reduced term pregnancy rate, impaired maternal reproductive outcome and fetal-placental development, decreased GSH-Px (G3 = G4 = 0.6 ± 0.2) and SOD (G3 = 223.0 ± 84.7; G4 = 146.1 ± 40.8), and decreased fetal CAT activity (G3 = 22.4 ± 10.6; G4 = 34.4 ± 14.1) and GSH-t (G3 = G4 = 0.3 ± 0.2), compared to the non-diabetic groups (G1, untreated control; G2, treated). For G1, maternal GSH-Px = 0.9 ± 0.2 and SOD = 274.1 ± 80.3; fetal CAT = 92.6 ± 82.7 and GSH-t = 0.6 ± 0.5. For G2, G. biloba treatment caused no toxicity and did not modify maternal or fetal-placental data. EGb 761 at the nontoxic dose used (200 mg kg-1 day-1), failed to modify the diabetes-associated increase in maternal glycemia, decrease in pregnancy rate, decrease in antioxidant enzymes, and impaired fetal development when the rats were treated throughout pregnancy (21 days).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oxidative stress is considered a possible molecular mechanism involved in Pb neurotoxicity. Considering the vulnerability of the developing brain to Pb neurotoxicity, this study was carried out to investigate the effects of low-level developmental Pb exposure on brain regions antioxidant enzymes activities. Wister dams were exposed to 500 ppm of Pb, as Pb acetate, or to 660 ppm Na acetate in the drinking water during pregnancy and lactation. The activities of superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase were determined in the hypothalamus, hippocampus and striatum of male pups at 23 (weaned) or 70 days (adult) of age. In the Pb-exposed 23-day-old pups, the activity of SOD was decreased in the hypothalamus. Regarding adults, there was no significant treatment effect in any of the enzymes and regions evaluated. Based on the present results, it seems that oxidative stress due to decreased antioxidant function may occur in weaned rats but it is suggested that this should not be the main mechanism involved in the neurotoxicity of low-level Pb exposure. (C) 2001 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several evidences point for beneficial effects of growth hormone (GH) in heart failure (HF). Taking into account that HF is related with changes in myocardial oxidative stress and in energy generation from metabolic pathways, it is important to clarify whether GH increase or decrease myocardial oxidative stress and what is its effect on energetic metabolism in HF condition. Thus, this study investigated the effects of two different doses of GH on energetic metabolism and oxidative stress in myocardium of rats with HF. Male Wistar rats (n = 25) were submitted to aortic stenosis (AS). The HF was evidenced by tachypnea and echocardiographic criteria around 28 weeks of AS. The rats were then randomly divided into three groups: (HF) with HF, treated with saline (0.9% NaCl); (HF-GHI), treated with 1 mk/kg/day recombinant human growth hormone (rhGH), and (HF-GH2) treated with 2 mg/kg/day rhGH. GH was injected, subcutaneously, daily for 2 weeks. A control group (sham; n = 12), with the same age of the others rats was evaluated to confirm data for AS. HF had lower IGF-I (insulin-like growth factor-I) than sham-operated rats, and both GH treatments normalized IGF-I level. HF-GH1 animals had lower lipid hydroperoxide (LH), LH/total antioxidant substances (TAS) and glutathione-reductase than HF. Glutathione peroxidase (GSH-Px), hydroxyacyl coenzyme-A dehydrogenase, lactate dehydrogenase(LDH) were higher in HF-GH1 than in HF. HF-GH2 compared with HF, had increased LH/TAS ratio, as well as decreased oxidized glutathione and LDH activity. Comparing the two GH doses, GSH-Px, superoxide dismutase and LDH were lower in HF-GH2 than in HF-GHI. In conclusion, GH effects were dose-dependent and both tested doses did not aggravate the heart dysfunction. The higher GH dose, 2 mg/kg exerted detrimental effects related to energy metabolism and oxidative stress. The lower dose, 1 mg/kg GH exerted beneficial effects enhancing antioxidant defences, reducing oxidative stress and improving energy generation in myocardium of rats with heart failure. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ethanol-induced oxidative damage is commonly associated with the generation of reactive oxygen molecules, leading to oxidative stress. Considering that antioxidant activity is an important mechanism of action involved in cytoprotection, the aim of this work was to evaluate the antioxidant properties of the alkaloid indigo (1) (2 mg/kg, p. o.), obtained from the leaves of Indigofera truxillensis Kunth (Fabaceae), on rat gastric mucosa submitted to ethanol-induced (100%, 1 mL, p.o.) gastric ulcer. Enzymatic assays and DNA fragmentation analysis were performed. When ethanol was administered to the control group, the sulfhydryl content (SH) and the glutathione peroxidase (GPx) activity decreased by 41% and 50%, respectively; in contrast, superoxide dismutase (SOD) and glutathione reductase (GR) activities increased by 56% and 67%, respectively. Additionally, myeloperoxidase (MPO) activity, a marker for free radical generation caused by polymorphonuclear neutrophil (PMN) tissue infiltration, also increased 4.5-fold after ethanol treatment. Rat gastric mucosa exposed to ethanol showed DNA fragmentation. Indigo alkaloid pretreatment protected rats from ethanol-induced gastric lesions. This effect was determined by the ulcerative lesion area (ULA), indicating an inhibition of around 80% at 2 mg/kg. This alkaloid also diminished GPx activity, which was higher than that observed with ethanol alone. However, this effect was counterbalanced by increased GR activity. Indigo was unable to restore alterations in SOD activity promoted by ethanol. After indigo pretreatment, SH levels and MPO activity remained normal and gastric mucosa DNA damage caused by ethanol was also partially prevented by indigo. These results suggest that the gastroprotective mechanisms of indigo include non-enzymatic antioxidant effects and the inhibition of PMN infiltration which, in combination, partially protect the gastric mucosa against ethanol-induced DNA damage.
Oxidative stress biomarkers and aggressive behavior in fish exposed to aquatic cadmium contamination
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)