833 resultados para Fiber lasers


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline powders and vitreous thin films were studied. Precursor solutions were obtained using a modified polymeric precursor method using D-sorbitol as complexant agent. The chemical reactions were described. Y(0.)9Er(0.1)Al(3)(BO(3))(4) composition presents good thermal stability with regard to crystallization. The Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystallized phase can be obtained at 1,150 degrees C, in agreement with other authors. Crack- and porosity-free films were obtained with very small grain size and low RMS roughness. The films thickness revealed to be linearly dependent on precursor solution viscosity, being the value of 25 mPa s useful to prepare high-quality amorphous multi-layers (up to similar to 800 nm) at 740 degrees C during 2 h onto silica substrates by spin coating with a gyrset technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary excited state absorption processes relating to the (5)I(6) -> (5)I(7) 3 mu m laser transition in singly Ho(3+)-doped fluoride glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the (5)I(6) and (5)I(7) energy levels established the occurrence of two excited state absorption transitions from these energy levels that compete with previously described energy transfer upconversion processes. The (5)I(7) -> (5)I(4) excited state absorption transition has peak cross sections at 1216 nm (sigma(esa)=2.8x10(-21) cm(2)), 1174 nm (sigma(esa)=1x10(-21) cm(2)), and 1134 nm (sigma(esa)=7.4x10(-22) cm(2)) which have a strong overlap with the (5)I(8) -> (5)I(6) ground state absorption. on the other hand, it was established that the excited state absorption transition (5)I(6) -> (5)S(2) had a weak overlap with ground state absorption. Using numerical solution of the rate equations, we show that Ho(3+)-doped fluoride fiber lasers employing pumping at 1100 nm rely on excited state absorption from the lowest excited state of Ho(3+) to maintain a population inversion and that energy transfer upconversion processes compete detrimentally with the excited state absorption processes in concentrated Ho(3+)-doped fluoride glass. (c) 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two series of glasses with composition (mol%) 70PbGeO3- 15PbF2-15CdF2, the first one with different Tm 3+ contents (0.2, 0.4, 0.6 and 0.8 mol%) and the second one with 0.2 mol% Tm3+ and different Ho3+ contents (0.1, 0.5, 1.0 and 1.5 mol%), have been prepared and some of their spectroscopic properties studied. Absorption in the visible-near infrared and emission in the near infrared region of the electromagnetic spectrum have been obtained. Concerning emission at the 1.4-1.5 μm region, optimization of rare earth ions content leads to 0.2 and 0.5 mol% for Tm3+ and Ho3+, respectively. We discuss potential application of these compositions. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New photonic crystal fiber designs are presented and numerically investigated in order to improve the state of art of high power fiber lasers. The focus of this work is targeted on the region of 2 μm laser emission, which is of high interest due to its eye-safe nature and due to the large amount of applications permitted. Thulium doped fiber amplifiers are suitable for emitting in this region. Different fiber designs have been proposed, both flexible and rod-type, with the aim to enlarge mode area while maintaining robust single mode operation. The analysis of thermal effects, caused by the high thulium quantum defect, have been taken in consideration. Solutions to counteract issues derived by detrimental thermal effects have been implemented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a theory of coherent propagation and energy or power transfer in a low-dimension array of coupled nonlinear waveguides. It is demonstrated that in the array with nonequal cores (e.g., with the central core) stable steady-state coherent multicore propagation is possible only in the nonlinear regime, with a power-controlled phase matching. The developed theory of energy or power transfer in nonlinear discrete systems is rather generic and has a range of potential applications including both high-power fiber lasers and ultrahigh-capacity optical communication systems. © 2012 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present modulation instability analysis including azimuthal perturbations of steady-state continuous wave (CW) propagation in multicore-fiber configurations with a central core. In systems with a central core, a steady CW evolution regime requires power-controlled phase matching, which offers interesting spatial-division applications. Our results have general applicability and are relevant to a range of physical and engineering systems, including high-power fiber lasers, optical transmission in multicore fiber, and systems of coupled nonlinear waveguides. © 2013 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity - the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As shown recently, a long telecommunication fibre may be treated as a natural one-dimensional random system, where lasing is possible due to a combination of random distributed feedback via Rayleigh scattering by natural refractive index inhomogeneities and distributed amplification through the Raman effect. Here we present a new type of a random fibre laser with a narrow (∼1 nm) spectrum tunable over a broad wavelength range (1535-1570 nm) with a uniquely flat (∼0.1 dB) and high (>2 W) output power and prominent (>40 %) differential efficiency, which outperforms traditional fibre lasers of the same category, e.g. a conventional Raman laser with a linear cavity formed in the same fibre by adding point reflectors. Analytical model is proposed that explains quantitatively the higher efficiency and the flatter tuning curve of the random fiber laser compared to conventional one. The other important features of the random fibre laser like "modeless" spectrum of specific shape and corresponding intensity fluctuations as well as the techniques of controlling its output characteristics are discussed. Outstanding characteristics defined by new underlying physics and the simplicity of the scheme implemented in standard telecom fibre make the demonstrated tunable random fibre laser a very attractive light source both for fundamental science and practical applications such as optical communication, sensing and secure transmission. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A range of physical and engineering systems exhibit an irregular complex dynamics featuring alternation of quiet and burst time intervals called the intermittency. The intermittent dynamics most popular in laser science is the on-off intermittency [1]. The on-off intermittency can be understood as a conversion of the noise in a system close to an instability threshold into effective time-dependent fluctuations which result in the alternation of stable and unstable periods. The on-off intermittency has been recently demonstrated in semiconductor, Erbium doped and Raman lasers [2-5]. Recently demonstrated random distributed feedback (random DFB) fiber laser has an irregular dynamics near the generation threshold [6,7]. Here we show the intermittency in the cascaded random DFB fiber laser. We study intensity fluctuations in a random DFB fiber laser based on nitrogen doped fiber. The laser generates first and second Stokes components 1120 nm and 1180 nm respectively under an appropriate pumping. We study the intermittency in the radiation of the second Stokes wave. The typical time trace near the generation threshold of the second Stokes wave (Pth) is shown at Fig. 1a. From the number of long enough time-traces we calculate statistical distribution between major spikes in time dynamics, Fig. 1b. To eliminate contribution of high frequency components of spikes we use a low pass filter along with the reference value of the output power. Experimental data is fitted by power law, ~(P-Pth)y, where is a mean time between pikes. There are two different intermittency regimes. Just above Pth, the mean time is approximated by the -3/2 power law. The -3/2 power law is typical to the on-off intermittency with hopping between two states (first and second Stokes waves in our case) [7]. At higher power, the mean time is approximated by -4 power law, that indicates a change in intermittency type to multistate. Multistable dynamics is observed in erbium-doped fiber lasers [8]. The origin of multiples states in our system could be probably connected with polarization hopping or other reasons and should be further investigated. We have presented a first experimental statistical characterisation of the on-off and multistate intermittencies that occur in the generation of the second Stokes wave in nitrogen doped random DFB fiber laser. References [1] H. Fujisaka and T. Yamada, “A New Intermittency in Coupled Dynamical Systems,” Prog. Theor. Phys. 74, 918 (1985). [2] S. Osborne, A. Amann, D. Bitauld, and S. O’Brien, “On-off intermittency in an optically injected semiconductor laser,” Phys. Rev. E 85, 056204 (2012). [3] S. Sergeyev, K. O'Mahoney, S. Popov, and A. T. Friberg, “Coherence and anticoherence resonance in high-concentration erbium-doped fiber laser,” Opt. Lett. 35, 3736 (2010). [4] A.E. El-Taher, S.V. Sergeyev, E.G. Turitsyna, P. Harper, and S. K. Turitsyn, “Intermittent Self-Pulsing in a Fiber Raman Laser”, In proc. Conf. Nonlin. Photon., paper ID 1367139, Colorado Springs, USA, 2012 [5] S.K. Turitsyn, S.A. Babin, A.E. El-Taher, P. Harper, D.V. Churkin, S.I. Kablukov, J.D. Ania-Castañón, V. Karalekas, and E.V. Podivilov, “Random distributed feedback fibre laser”, Nat. Photon..4, 231 (2010). [6] I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, "Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm," Opt. Express 19, 18486 (2011). [7] W. Feller, An introduction to probability theory and its applications, Vol. 1, 3rd ed. (Wiley, New-York, 1968). [8] G. Huerta-Cuellar, A.N. Pisarchik, and Y.O. Barmenkov, “Experimental characterization of hopping dynamics in a multistable fiber laser,” Phys. Rev. E 78, 035202(R) (2008).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le développement au cours des dernières décennies de lasers à fibre à verrouillage de modes permet aujourd’hui d’avoir accès à des sources fiables d’impulsions femtosecondes qui sont utilisées autant dans les laboratoires de recherche que pour des applications commerciales. Grâce à leur large bande passante ainsi qu’à leur excellente dissipation de chaleur, les fibres dopées avec des ions de terres rares ont permis l’amplification et la génération d’impulsions brèves de haute énergie avec une forte cadence. Cependant, les effets non linéaires causés par la faible taille du faisceau dans la fibre ainsi que la saturation de l’inversion de population du milieu compliquent l’utilisation d’amplificateurs fibrés pour l’obtention d’impulsions brèves dont l’énergie dépasse le millijoule. Diverses stratégies comme l’étirement des impulsions à des durées de l’ordre de la nanoseconde, l’utilisation de fibres à cristaux photoniques ayant un coeur plus large et l’amplification en parallèle ont permis de contourner ces limitations pour obtenir des impulsions de quelques millijoules ayant une durée inférieure à la picoseconde. Ce mémoire de maîtrise présente une nouvelle approche pour l’amplification d’impulsions brèves utilisant la diffusion Raman des verres de silice comme milieu de gain. Il est connu que cet effet non linéaire permet l’amplification avec une large bande passante et ce dernier est d’ailleurs couramment utilisé aujourd’hui dans les réseaux de télécommunications par fibre optique. Puisque l’adaptation des schémas d’amplification Raman existants aux impulsions brèves de haute énergie n’est pas directe, on propose plutôt un schéma consistant à transférer l’énergie d’une impulsion pompe quasi monochromatique à une impulsion signal brève étirée avec une dérive en fréquence. Afin d’évaluer le potentiel du gain Raman pour l’amplification d’impulsions brèves, ce mémoire présente un modèle analytique permettant de prédire les caractéristiques de l’impulsion amplifiée selon celles de la pompe et le milieu dans lequel elles se propagent. On trouve alors que la bande passante élevée du gain Raman des verres de silice ainsi que sa saturation inhomogène permettent l’amplification d’impulsions signal à une énergie comparable à celle de la pompe tout en conservant une largeur spectrale élevée supportant la compression à des durées très brèves. Quelques variantes du schéma d’amplification sont proposées, et leur potentiel est évalué par l’utilisation du modèle analytique ou de simulations numériques. On prédit analytiquement et numériquement l’amplification Raman d’impulsions à des énergies de quelques millijoules, dont la durée est inférieure à 150 fs et dont la puissance crête avoisine 20 GW.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The usage of subcarrier multiplexing (SCM) techniques to allow link transmission in excess of the specified fiber bandwidth is described. A series of 200-Mbit/s channels with carrier frequencies of up to more than twenty times the 3-dB fiber bandwidth have been successfully used, the maximum being limited by the available electronics. To assess the transmission of the fiber, digitally modulated channels are placed on high frequency carrier signals and then used to modulate a vertical-cavity surface-emitting lasers (VCSEL).