Amplification d’impulsions brèves de haute énergie par effet Raman stimulé dans les fibres optiques
Contribuinte(s) |
Piché, Michel Olivier, Michel |
---|---|
Data(s) |
01/10/2016
|
Resumo |
Le développement au cours des dernières décennies de lasers à fibre à verrouillage de modes permet aujourd’hui d’avoir accès à des sources fiables d’impulsions femtosecondes qui sont utilisées autant dans les laboratoires de recherche que pour des applications commerciales. Grâce à leur large bande passante ainsi qu’à leur excellente dissipation de chaleur, les fibres dopées avec des ions de terres rares ont permis l’amplification et la génération d’impulsions brèves de haute énergie avec une forte cadence. Cependant, les effets non linéaires causés par la faible taille du faisceau dans la fibre ainsi que la saturation de l’inversion de population du milieu compliquent l’utilisation d’amplificateurs fibrés pour l’obtention d’impulsions brèves dont l’énergie dépasse le millijoule. Diverses stratégies comme l’étirement des impulsions à des durées de l’ordre de la nanoseconde, l’utilisation de fibres à cristaux photoniques ayant un coeur plus large et l’amplification en parallèle ont permis de contourner ces limitations pour obtenir des impulsions de quelques millijoules ayant une durée inférieure à la picoseconde. Ce mémoire de maîtrise présente une nouvelle approche pour l’amplification d’impulsions brèves utilisant la diffusion Raman des verres de silice comme milieu de gain. Il est connu que cet effet non linéaire permet l’amplification avec une large bande passante et ce dernier est d’ailleurs couramment utilisé aujourd’hui dans les réseaux de télécommunications par fibre optique. Puisque l’adaptation des schémas d’amplification Raman existants aux impulsions brèves de haute énergie n’est pas directe, on propose plutôt un schéma consistant à transférer l’énergie d’une impulsion pompe quasi monochromatique à une impulsion signal brève étirée avec une dérive en fréquence. Afin d’évaluer le potentiel du gain Raman pour l’amplification d’impulsions brèves, ce mémoire présente un modèle analytique permettant de prédire les caractéristiques de l’impulsion amplifiée selon celles de la pompe et le milieu dans lequel elles se propagent. On trouve alors que la bande passante élevée du gain Raman des verres de silice ainsi que sa saturation inhomogène permettent l’amplification d’impulsions signal à une énergie comparable à celle de la pompe tout en conservant une largeur spectrale élevée supportant la compression à des durées très brèves. Quelques variantes du schéma d’amplification sont proposées, et leur potentiel est évalué par l’utilisation du modèle analytique ou de simulations numériques. On prédit analytiquement et numériquement l’amplification Raman d’impulsions à des énergies de quelques millijoules, dont la durée est inférieure à 150 fs et dont la puissance crête avoisine 20 GW. The development in the last decades of mode-locked fiber lasers resulted in the availability of reliable sources of femtosecond pulses that are both used for fundamental research and commercial applications. The wide gain bandwidth and excellent heat dissipation of rareearth-doped optical fibers have made possible the amplification and generation of high-energy ultrashort pulses with high repetition rates. However, phenomena such as nonlinear effects due to the small size of the beam and saturation of the population inversion in the gain medium tend to complicate their use for the amplification of pulses to energies exceeding the millijoule. Several strategies such as stretching the pulses to durations over the nanosecond, using photonic crystal fibers that have a wider core and parallelization have been used to circumvent these limitations, leading to pulses of a few millijoules with durations lower than a picosecond. This master’s thesis presents a novel approach for amplification of ultrashort pulses using stimulated Raman scattering in silica fibers as a gain mechanism. It is well known that this nonlinear effect allows the amplification with a wide bandwidth, such that it is nowadays commonly used in optical-fiber telecommunication networks. Because the adaptation of existing Raman amplification schemes to high-energy ultrashort pulses is not straightforward, we propose instead to transfer energy from a quasi-monochromatic pump pulse to a copropagating ultrashort signal pulse, stretched to comparable durations with a frequency chirp. In order to evaluate the potential of the Raman gain for the amplification of ultrashort pulses, this thesis presents an analytical model allowing the prediction of the amplified pulse’s features, depending upon those of the pump and upon the medium in which they are propagated. We thus find that the wide bandwidth of the Raman gain in silica glass, in addition to its inhomogeneous saturation, allows the amplification of signal pulses to energies of the same magnitude than that of the pump, while keeping their spectrum wide enough to support their compression to ultrashort durations. A few variants of the amplification scheme are presented, and their potential is evaluated using the analytical model or numerical simulations. We predict analytically and numerically the Raman amplification of pulses to energies of a few millijoules, whose durations are lower than 150 fs and having peak powers close to 20 GW. |
Formato |
application/pdf |
Identificador |
TC-QQLA-32860 |
Idioma(s) |
FR |
Publicador |
Université Laval |
Direitos |
© Maxime Hardy, 2016 |
Palavras-Chave | #Impulsions laser ultra-brèves #Fibres optiques #Effet Raman #Amplificateurs |
Tipo |
Electronic Thesis or Dissertation |