926 resultados para Electric vehicles.
Resumo:
Completed as part of a Joint PhD program between Queensland University of Technology and the Royal Institute of Technology in Stockholm, Sweden, this thesis examines the effects of different government incentive policies on the demand, usage and pricing of energy efficient vehicles. This study outlines recommendations for policy makers aiming to increase the uptake of energy efficient vehicles. The study finds that whilst many government incentives have been successful in encouraging the uptake of energy efficient vehicles, policy makers need to both recognise and attempt to minimise the potential unintended consequences of such initiatives.
Resumo:
Electricity businesses across Australia are facing many market disruptions, such as the increasing demand from the rapid uptake of domestic air conditioners and the contrasting problematic generation from solar power connections to the grid. In this context, the opportunity to proactively leverage forthcoming technological advances in battery storage and electric vehicles to address the steeply rising cost of electricity supply has emerged. This research explores a design approach to support a business to navigate such disruptions in the current market.This study examines a design-led approach to innovation conducted over a ten month action research study within a large, risk-averse firm in the Australian energy sector. This article presents results describing a current foresight gap within the business; the response of the business to using design-led innovation to address this issue; and the tools, approaches and processes used. The business responses indicate their perception of the value of qualitative customer engagement as a path to addressing, and potentially benefiting from, disruptive innovation. It is anticipated that these results will further business model development within the company, and assist in leveraging disruptive innovations for this industry participant, thus limiting future increases in the cost of electricity supply for customers in Australia.
Resumo:
This paper presents a flexible and integrated planning tool for active distribution network to maximise the benefits of having high level s of renewables, customer engagement, and new technology implementations. The tool has two main processing parts: “optimisation” and “forecast”. The “optimization” part is an automated and integrated planning framework to optimize the net present value (NPV) of investment strategy for electric distribution network augmentation over large areas and long planning horizons (e.g. 5 to 20 years) based on a modified particle swarm optimization (MPSO). The “forecast” is a flexible agent-based framework to produce load duration curves (LDCs) of load forecasts for different levels of customer engagement, energy storage controls, and electric vehicles (EVs). In addition, “forecast” connects the existing databases of utility to the proposed tool as well as outputs the load profiles and network plan in Google Earth. This integrated tool enables different divisions within a utility to analyze their programs and options in a single platform using comprehensive information.
Resumo:
PMSM drive with high dynamic response is the attractive solution for servo applications like robotics, machine tools, electric vehicles. Vector control is widely accepted control strategy for PMSM control, which enables decoupled control of torque and flux, this improving the transient response of torque and speed. As the vector control demands exhaustive real time computations, so the present work is implemented using TI DSP 320C240. Presently position and speed controller have been successfully tested. The feedback information used is shaft (rotor) position from the incremental encoder and two motor currents. We conclude with the hope to extend the present experimental set up for further research related to PMSM applications.
Resumo:
The demand for high power density lithium-ion batteries (LIBs) for diverse applications ranging from mobile electronics to electric vehicles have resulted in an upsurge in the development of nanostructured electrode materials worldwide. Graphite has been the anode of choice in commercial LiBs. Due to several detrimental electrochemical and environmental issues, efforts are now on to develop alternative non-carbonaceous anodes which are safe, nontoxic and cost effective and at the same time exhibit high lithium storage capacity and rate capability. Titania (TiO2) and tin (Sn) based systems have gained much attention as alternative anode materials. Nanostructuring of TiO2 and SnO2 have resulted in enhancement of structural stability and electrochemical performances. Additionally, electronic wiring of mesoporous materials using carbon also effectively enhanced electronic conductivity of mesoporous electrode materials. We discuss in this article the beneficial influence of structural spacers and electronic wiring in anatase titania (TiO2) and tin dioxide (SnO2).
Resumo:
The high efficiency of fuel-cell-powered electric vehicles makes them a potentially viable option for future transportation. Polymer Electrolyte Fuel Cells (PEFCs) are most promising among various fuel cells for electric traction due to their quick start-up and low-temperature operation. In recent years, the performance of PEFCs has reached the acceptable level both for automotive and stationary applications and efforts are now being expended in increasing their durability, which remains a major concern in their commercialization. To make PEFCs meet automotive targets an understanding of the factors affecting the stability of carbon support and platinum catalyst is critical. Alloying platinum (Pt) with first-row transition metals such as cobalt (Co) is reported to facilitate both higher degree of crystallinity and enhanced activity in relation to pristine Pt. But a major challenge for the application of Pt-transition metal alloys in PEFCs is to improve the stability of these binary catalysts. Dissolution of the non-precious metal in the acidic environment could alleviate the activity of the catalysts and hence cell performance. The use of graphitic carbon as cathode-catalyst support enhances the long-term stability of Pt and its alloys in relation to non-graphitic carbon as the former exhibits higher resistance to carbon corrosion in relation to the latter in PEFC cathodes during accelerated-stress test (AST). Changes in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored during AST through cyclic voltammetry, cell polarization and impedance measurements, respectively. Studies on catalytic electrodes with X-ray diffraction, Raman spectroscopy and transmission electron microscopy reflect that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt and Pt3Co catalyst particles. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.051301jes] All rights reserved.
Resumo:
In this second of the two-part study, the results of the Tank-to-Wheels study reported in the first part are combined with Well-to-Tank results in this paper to provide a comprehensive Well-to-Wheels energy consumption and greenhouse gas emissions evaluation of automotive fuels in India. The results indicate that liquid fuels derived from petroleum have Well-to-Tank efficiencies in the range of 75-85% with liquefied petroleum gas being the most efficient fuel in the Well-to-Tank stage with 85% efficiency. Electricity has the lowest efficiency of 20% which is mainly attributed due to its dependence on coal and 25.4% losses during transmission and distribution. The complete Well-to-Wheels results show diesel vehicles to be the most efficient among all configurations, specifically the diesel-powered split hybrid electric vehicle. Hydrogen engine configurations are the least efficient due to low efficiency of production of hydrogen from natural gas. Hybridizing electric vehicles reduces the Well-to-Wheels greenhouse gas emissions substantially with split hybrid configuration being the most efficient. Electric vehicles do not offer any significant improvement over gasoline-powered configurations; however a shift towards renewable sources for power generation and reduction in losses during transmission and distribution can make it a feasible option in the future. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
4 p.
Resumo:
Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads such as air conditioners, dish washers, and electric vehicles will also participate in the coming years. The electricity consumption of these smaller loads, which we call deferrable loads, can be shifted over time, and thus be used (in aggregate) to compensate for the random fluctuations in renewable generation.
In this thesis, we propose a real-time distributed deferrable load control algorithm to reduce the variance of aggregate load (load minus renewable generation) by shifting the power consumption of deferrable loads to periods with high renewable generation. The algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes the expected variance to go with updated predictions. We prove that suboptimality of this model predictive algorithm vanishes as time horizon expands in the average case analysis. Further, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance. Finally, we evaluate the algorithm via trace-based simulations.
Resumo:
Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads such as air conditioners, dish washers, and electric vehicles will also participate in the coming years. The electricity consumption of these smaller loads, which we call deferrable loads, can be shifted over time, and thus be used (in aggregate) to compensate for the random fluctuations in renewable generation.
In this thesis, we propose a real-time distributed deferrable load control algorithm to reduce the variance of aggregate load (load minus renewable generation) by shifting the power consumption of deferrable loads to periods with high renewable generation. The algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes the expected variance to go with updated predictions. We prove that suboptimality of this model predictive algorithm vanishes as time horizon expands in the average case analysis. Further, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance. Finally, we evaluate the algorithm via trace-based simulations.
Resumo:
Questões climáticas, atmosféricas e de poluição ambiental têm tornado o uso final da energia assunto de interesse mundial. Sistemas com tração elétrica oferecem a oportunidade de redução de emissões. O mix de energia caracterizado pela matriz energética brasileira viabiliza o desenvolvimento desta tecnologia. É desenvolvida aqui uma metodologia para conversão de veículos equipados com motores a combustão interna para tração elétrica. A metodologia considera fatores como o peso e tamanho, o torque de partida, transmissão e potência, entre outros. Ferramentas matemáticas e a prática corrente fornecem a base para a elaboração deste trabalho, que descreve a análise de desempenho de veículos elétricos, os componentes utilizados, as equações mecânicas e os critérios para escolha do veículo ideal para conversão. É apresentada a execução de um projeto de conversão de uma Kombi para tração elétrica, cujo objetivo tem caráter educativo, buscando assim promover os benefícios da tecnologia veicular elétrica. Para viabilização do experimento, o trabalho conclui que é necessário ampliar a demanda por nacionalização de tecnologia, o que tornaria o projeto uma realidade comercialmente viável. Além disto, há necessidade de políticas públicas para o incentivo da tecnologia veicular elétrica no Brasil. Este trabalho apresenta uma contribuição para converter veículos para tração elétrica, visto que sistematiza as etapas de projeto, a partir das quais outros poderão seguir, utilizando componentes encontrados no mercado nacional.
Resumo:
Nos últimos anos, o consumo de energia vem crescendo mundialmente nos grandes centros urbanos, e esforços na área de eficiência energética estão sendo implantados, a fim de reduzir o consumo no horário da ponta e interrupções da rede. O aproveitamento das fontes renováveis, como o fotovoltaico em uma edificação se torna um atrativo a mais para a matriz energética num momento em que o país prima pela universalização dos serviços de energia e a classificação de edifícios comerciais, de serviço e públicos, além dos residenciais quanto à eficiência energética através do Procel Edifica (RTQ-C e RTQ-R). Os sistemas fotovoltaicos podem configurar perfis de uso nas edificações de modo a gerar energia para consumo próprio ou ligado à rede e ainda ter influência na arquitetura do prédio com revestimento: os perfis podem está em telhados, fachadas ou janelas, amenizando em alguns casos a carga térmica no prédio com sombreamento arquitetônico. Hoje, com o avanço da tecnologia no setor de armazenagem é possível, o atendimento com segurança e eficiência a uma edificação ou direcionar esta armazenagem a uma demanda específica como o atendimento à demanda de ciclo profundo, tais como, iluminação externa e recarga de veículos elétricos. Partindo da premissa de sistemas interruptos de energia, UPS, uso de fonte secundária como FV, baterias e Flywheel é apresentado uma forma de melhor gerenciar a energia armazenada, podendo estender a vida útil da bateria e conseqüentemente de todo o sistema fotovoltaico na edificação. Esta forma de armazenar energia proporciona um serviço de uso contínuo sem percepção das interrupções da rede com garantia de 20 anos, tal qual o módulo fotovoltaico, com esta proposta as perdas de energia elétrica na edificação serão atenuadas, pois a eletricidade será utilizada de forma eficiente e inteligente. O ponto de partida do estudo de caso no prédio do IBAM são os sistemas fotovoltaicos com geração distribuída (mini-redes) conectados à rede que são instalados para fornecer energia ao consumidor, complementando a quantidade de energia demandada, caso haja algum aumento do consumo de energia na edificação, ou ainda utilizar o sistema fotovoltaico na hora da ponta e interrupções do sistema da rede no período fora da ponta. A estocagem inercial por meio do Flywheel tem um papel fundamental nesta mini-rede (Flywheel, bateria VRLA, UPS, inversor e STS), pois a sua utilização pode ser apontada como uma inovação tecnológica quanto à regulação de tensão no sistema de energia elétrica, além de preparar a edificação para o smart-grid. Esta configuração de acumulação de energia permitiu a analise do deslocamento desta energia armazenada para o consumo no horário de ponta, mudando o conceito de sistemas fotovoltaicos autônomos no meio urbano e rural no país. Este conceito de armazenagem se confirma então como um aporte na eficiência de energia na edificação, podendo carrear economia de energia substancial, além de proporcionar uma confiabilidade no serviço de energia, com um baixo retorno do investimento e com uma garantia de funcionamento com pequena ou nenhuma manutenção durante o período de vida de 20 anos.
Resumo:
Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.
Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.
The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.
Resumo:
[ES]El objetivo de este proyecto es diseñar y construir un circuito identificador y conmutador para carga de baterías en serie autónomo. La funcionalidad de este dispositivo es determinar cual es la batería menos cargada de un banco de baterías de ácido plomo que alimenta un coche al estándar de 48 voltios(conformado por cuatro baterías de 12 voltios). Una vez determinado cual es la batería menos cargada debe re-‐ direccionar la corriente dada por una placa solar a dicha batería. Todo esto debe hacerlo de forma autónoma, a través de un programa específico, implementado en un microcontrolador. En las diferentes fases del proyecto se ha diseñado el software, se ha diseñado y montado el hardware y se ha verificado su correcto funcionamiento. Además se presentan los costes y la viabilidad de una propuesta de fabricación estandarizada a partir de los planos resultantes del proyecto. Este proyecto surge como respuesta a la actual necesidad de aumentar la limitada autonomía de los coches eléctricos y hacerlos más eficientes. El proyecto se ha llevado a cabo en el laboratorio de electrónica de la ETSI de Bilbao y pretende promover el uso de los coches eléctricos y energías renovables.
Resumo:
[ES]En la actualidad, el modelo de transporte apenas ha avanzado en el intento de frenar el Cambio Climático o en el cuidado del medio ambiente. Además, el gran negocio que existe detrás del petróleo hace que este tipo de transporte sea poco sostenible. Es por eso que se está desarrollando, a nivel nacional e internacional, una solución a dicho problema que es el uso del vehiculó eléctrico (VE). La introducción masiva del VE permitirá el uso extensivo de fuentes de energía no contaminantes e intermitentes, como son las energías renovables. Sin embargo, los VEs están lejos de ser una tecnología probada. Existen aún muchos problemas en torno a él que deben ser resueltos, entre ellos se encuentra el desarrollo de las baterías, su modelo de negocio y coste o la influencia de la conexión del VE sobre la red eléctrica. Este último problema, estará muy influenciado por el comportamiento social del futuro conductor, lo cual es el eje central del proyecto.