967 resultados para Distribution Functions
Resumo:
Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983) 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997) 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985) 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r)) and g(O/H(r)) do not depend on them.
Resumo:
A Wigner function associated with the Rogers-Szego polynomials is proposed and its properties are discussed. It is shown that from such a Wigner function it is possible to obtain well-behaved probability distribution functions for both angle and action variables, defined on the compact support -pi less than or equal to theta < pi, and for m greater than or equal to 0, respectively. The width of the angle probability density is governed by the free parameter q characterizing the polynomials.
Resumo:
Adopting the framework of the Jaynes-Cummings model with an external quantum field, we obtain exact analytical expressions of the normally ordered moments for any kind of cavity and driving fields. Such analytical results are expressed in the integral form, with their integrands having a commom term that describes the product of the Glauber-Sudarshan quasiprobability distribution functions for each field, and a kernel responsible for the entanglement. Considering a specific initial state of the tripartite system, the normally ordered moments are then applied to investigate not only the squeezing effect and the nonlocal correlation measure based on the total variance of a pair of Einstein-Podolsky-Rosen type operators for continuous variable systems, but also the Shchukin-Vogel criterion. This kind of numerical investigation constitutes the first quantitative characterization of the entanglement properties for the driven Jaynes-Cummings model.
Resumo:
We derive the formal expressions needed to discuss the change of the twist-two parton distribution functions when a hadron is placed in a medium with relativistic scalar and vector mean fields. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In recent years, an approach to discrete quantum phase spaces which comprehends all the main quasiprobability distributions known has been developed. It is the research that started with the pioneering work of Galetti and Piza, where the idea of operator bases constructed of discrete Fourier transforms of unitary displacement operators was first introduced. Subsequently, the discrete coherent states were introduced, and finally, the s-parametrized distributions, that include the Wigner, Husimi, and Glauber-Sudarshan distribution functions as particular cases. In the present work, we adapt its formulation to encompass some additional discrete symmetries, achieving an elegant yet physically sound formalism.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a measurement of the muon charge asymmetry from W boson decays using 0.3 fb(-1) of data collected at root s =1.96 GeV between 2002 and 2004 with the D0 detector at the Fermilab Tevatron (p) over bar Collider. We compare our findings with expectations from next-to-leading-order calculations performed using the CTEQ6.1M and MRST04 NLO parton distribution functions. Our findings can be used to constrain future parton distribution function fits.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)