891 resultados para Difference Equations with Maxima


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter ? which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when ? is small, whereas the effect of the dissipation parameter is more pronounced when ? is comparatively large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of massive blowing rates on the steady laminar hypersonic boundary‐layer flow of an electrically conducting fluid in the stagnation region of an axisymmetric body with an applied magnetic field has been studied. The governing equations have been solved numerically by combining the implicit finite‐difference scheme with the quasi‐linearization technique. It is observed that the effect of massive blowing rates is to remove the viscous layer away from the boundary, whereas the effect of the magnetic field is just the opposite. It is also found that the velocity overshoot increases with blowing rates and also with magnetic field. The effect of the variation of the density‐viscosity product across the boundary layer is strong only when the blowing rate is small, but for the massive blowing rate the effect is negligible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

THE study of swirling boundary layers is of considerable importance in many rotodynamic machines such as rockets, jet engines, swirl generators, swirl atomizers, arc heaters, etc. For example, the introduction of swirl in a flow acceleration device such as a nozzle in a rocket engine promises efficient mass flow control. In nuclear rockets, swirl is used to retain the uranium atoms in the rocket chamber. With these applications in mind, Back1 and Muthanna and Nath2 have obtained the similarity solutions for a low-speed three-dimensional steady laminar compressible boundary layer with swirl inside an axisymmetric surface of variable cross section. The aim of the present analysis is to study the effect of massive blowing rates on the unsteady laminar swirling compressible boundary-layer flow of an axisymmetric body of arbitrary cross section when the freestream velocity and blowing rate vary with time. The type of swirl considered here is that of a free vortex superimposed on the longitudinal flow of a compressible fluid with variable properties. The analysis is applicable to external flow over a body as well as internal flow along a surface. For the case of external flow, strong blowing can have significant use in cooling the surface of hypervelocity vehicles, particularly when ablation occurs under large aerodynamic or radiative heating, but there may not be such an important application of strong blowing in the case of internal flow. The governing partial differential equations have been solved numerically using an implicit finite difference scheme with a quasilinearization technique.3 High temperature gas effects, such as radiation, dissociation, and ionization, etc., are not investigated. The nomenclature is usually that of Ref. 4 and is listed in the full paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of large mass injection on the following three-dimensional laminar compressible boundary-layer flows is investigated by employing the method of matched asymptotic expansions: (i) swirling flow in a laminar compressible boundary layer over an axisymmetric surface with variable cross-section and (ii) laminar compressible boundary-layer flow over a yawed infinite wing in a hypersonic flow. The resulting equations are solved numerically by combining the finite-difference technique with quasi-linearization. An increase in the swirl parameter, the yaw angle or the wall temperature is found to be capable of bringing the viscous layer nearer the surface and reducing the effects of massive blowing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the local asymptotic stabilization of a very general class of instable autonomous nonlinear difference equations which are subject to perturbed dynamics which can have a different order than that of the nominal difference equation. In the general case, the controller consists of two combined parts, namely, the feedback nominal controller which stabilizes the nominal (i.e., perturbation-free) difference equation plus an incremental controller which completes the stabilization in the presence of perturbed or unmodeled dynamics in the uncontrolled difference equation. A stabilization variant consists of using a single controller to stabilize both the nominal difference equation and also the perturbed one under a small-type characterization of the perturbed dynamics. The study is based on Banach fixed point principle, and it is also valid with slight modification for the stabilization of unstable oscillatory solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from nonhydrostatic Boussinesq approximation equations, a general method is introduced to deduce the dispersion relationships. A comparative investigation is performed on inertia-gravity wave with horizontal lengths of 100, 10 and 1 km. These are examined using the second-order central difference scheme and the fourth-order compact difference scheme on vertical grids that are currently available from the perspectives of frequency, horizontal and vertical component of group velocity. These findings are compared to analytical solutions. The obtained results suggest that whether for the second-order central difference scheme or for the fourth-order compact difference scheme, Charny-Phillips and Lorenz ( L) grids are suitable for studying waves at the above-mentioned horizontal scales; the Lorenz time-staggered and Charny-Phillips time staggered (CPTS) grids are applicable only to the horizontal scales of less than 10 km, and N grid ( unstaggered grid) is unsuitable for simulating waves at any horizontal scale. Furthermore, by using fourth-order compact difference scheme with higher difference precision, the errors of frequency and group velocity in horizontal and vertical directions produced on all vertical grids in describing the waves with horizontal lengths of 1, 10 and 100 km cannot inevitably be decreased. So in developing a numerical model, the higher-order finite difference scheme, like fourth-order compact difference scheme, should be avoided as much as possible, typically on L and CPTS grids, since it will not only take many efforts to design program but also make the calculated group velocity in horizontal and vertical directions even worse in accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper alms at illustrating the impact of spatial difference scheme and spatial resolution on the performance of Arakawa A-D grids in physical space. Linear shallow water equations are discretized and forecasted on Arakawa A-D grids for 120-minute using the ordinary second-order (M and fourth-order (C4) finite difference schemes with the grid spacing being 100 km, 10 km and I km, respectively. Then the forecasted results are compared with the exact solution, the result indicates that when the grid spacing is I kin, the inertial gravity wave can be simulated on any grid with the same results from C2 scheme or C4 scheme, namely the impact of variable configuration is neglectable; while the inertial gravity wave is simulated with lengthened grid spacing, the effects of different variable configurations are different. However, whether for C2 scheme or for C4 scheme, the RMS is minimal (maximal) on C (D) grid. At the same time it is also shown that when the difference accuracy increases from C2 scheme to C4 scheme, the resulted forecasts do not uniformly decrease, which is validated by the change of the group A velocity relative error from C2 scheme to C4 scheme. Therefore, the impact of the grid spacing is more important than that of the difference accuracy on the performance of Arakawa A-D grid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fractional-step method of predictor-corrector difference-pseudospectrum with unconditional L(2)-stability and exponential convergence is presented. The stability and convergence of this method is strictly proved mathematically for a nonlinear convection-dominated flow. The error estimation is given and the superiority of this method is verified by numerical test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate model simulations consistently show that in response to greenhouse gas forcing surface temperatures over land increase more rapidly than over sea. The enhanced warming over land is not simply a transient effect, since it is also present in equilibrium conditions. We examine 20 models from the IPCC AR4 database. The global land/sea warming ratio varies in the range 1.36–1.84, independent of global mean temperature change. In the presence of increasing radiative forcing, the warming ratio for a single model is fairly constant in time, implying that the land/sea temperature difference increases with time. The warming ratio varies with latitude, with a minimum in equatorial latitudes, and maxima in the subtropics. A simple explanation for these findings is provided, and comparisons are made with observations. For the low-latitude (40°S–40°N) mean, the models suggest a warming ratio of 1.51 ± 0.13, while recent observations suggest a ratio of 1.54 ± 0.09.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite-difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to a dam-break problem with cylindrical symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a generalization of collectively compact operator theory in Banach spaces is developed. A feature of the new theory is that the operators involved are no longer required to be compact in the norm topology. Instead it is required that the image of a bounded set under the operator family is sequentially compact in a weaker topology. As an application, the theory developed is used to establish solvability results for a class of systems of second kind integral equations on unbounded domains, this class including in particular systems of Wiener-Hopf integral equations with L1 convolutions kernels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications