936 resultados para Degradation process


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acid degradation of 3D zinc phosphates primarily yields a one-dimensional ladder compound, an observation that is significant considering that the latter forms 3D structures on heating in water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, a novel improved technology could be developed to convert the recalcitrant coir pith into environmental friendly organic manure. The standard method of composting involves the substitution of urea with nitrogen fixing bacteria viz. Azotobacter vinelandii and Azospirillum brasilense leading to the development of an improved method of coir pith. The combined action of the microorganisms could enhance the biodegradation of coir pith. In the present study, Pleurotus sajor caju, an edible mushroom which has the ability to degrade coir pith, and the addition of nitrogen fixing bacteria like Azotobacter vinelandii and Azospirillum brasilense could accelerate the action of the fungi on coir pith. The use of these microorganisms brings about definite changes in the NPK, Ammonia, Organic Carbon and Lignin contents in coir pith. This study will encourage the use of biodegraded coir pith as organic manure for agri/horti purpose to get better yields and can serve as a better technology to solve the problem of accumulated coir pith in coir based industries

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of pH on the degradation of the herbicide tebuthiuron (TBH) was investigated using in situ generated Fe(III)-citrate complexes (Fe:cit) submitted to the photo-Fenton process under solar irradiation. Using Fe:cit in a wide pH range (2.5-7.5), 100-78% TBH oxidation was achieved respectively from a UV dose of 2.0 J cm(-2) (15 min). Moreover, the oxidation of TBH obtained in the presence of Fe:cit at pH 6.0 was higher than that obtained using Fe(NO3)3 at pH 2.5. A similar behavior is observed for the removal of total organic carbon (TOC) in TBH solutions. In the presence of Fe:cit, 20% and 85% of TOC was removed at pH 7.5 and 2.5, respectively, after 7.5 J cm-2 irradiation, while no mineralization was observed employing Fe(NO3)(3) for the same UV dose. Using Fe(NO3)(3), mineralization was observed only after 11 J cm-2 (8%). A higher mineralization rate was obtained with Fe(NO3)(3) only when a concentration three times higher was employed at pH 2.5. Besides the high efficiency of TBH degradation observed using the ferric citrate complex in the solar photo-Fenton process, it also offers the advantage of application at a pH of up to 7.5. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, electrochemical and photo-assisted electrochemical processes are used for color, total organic carbon (TOC) and chemical oxygen demand (COD) degradation of one of the most abundant and strongly colored industrial wastewaters, which results from the dyeing of fibers and fabrics in the textile industry. The experiments were carried out in an 18L pilot-scale tubular low reactor with 70% TiO2/30% RuO2 DSA. A synthetic acid blue 40 solution and real dye house wastewater, containing the same dye, were used for the experiments. By using current density of 80 mA cm(-2) electrochemical process has the capability to remove 80% of color, 46% of TOC and 69% of COD. When used the photochemical process with 4.6 mW cm(-2) of 254nm UV-C radiation to assist the electrolysis, has been obtained 90% of color, 64% of TOC and 60% of COD removal in 90 minutes of processing; furthermore, 70% of initial color was degraded within the first 15 minutes. Experimental runs using dye house wastewater resulted in 78% of color, 26% of TOC and 49% of COD in electrolysis at 80 mA cm(-2) and 90 min; additionally, when photo-assisted, electrolysis resulted in removals of 85% of color, 42% of TOC and 58% of COD. For the operational conditions used in this study, color, TOC and COD showed pseudo-first-order decaying profiles. Apparent rate constants for degradation of TOC and COD were improved by one order of magnitude when the photo-electrochemical process was used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The degradation of the antibiotic tetracycline (TC) by the photo-Fenton process was evaluated under black-light and solar irradiation. The influences of iron source (Fe(NO3)(3) or ferrioxalate), hydrogen peroxide and matrix (pure water, surface water and a sewage treatment plant effluent-STP) were evaluated. Under black-light irradiation, TC degradation was favored in the presence of Fe(NO3)(3), achieving total degradation after 1 min irradiation, while under solar light the use of ferrioxalate favors the degradation. Nevertheless, no significant difference in total organic carbon removal was observed between these two iron sources, achieving a residual concentration of around 5 mg L-1 under black-light and 2 mg L-1 under solar light irradiation. No decrease of the degradation efficiency relative to pure water was observed when TC was irradiated in a sample of surface water, under either black-light or solar irradiation. However, lower efficiency was obtained under black-light when TC was present in a sample of STP effluent, indicating the interference of the constituents of this sample on the overall efficiency of the process. on the other hand, under solar irradiation in the presence of ferrioxalate, no influence of the matrix was observed, even in the sample of STP effluent, achieving total degradation of TC in 1.5 min. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy efficiency and user comfort have recently become priorities in the Facility Management (FM) sector. This has resulted in the use of innovative building components, such as thermal solar panels, heat pumps, etc., as they have potential to provide better performance, energy savings and increased user comfort. However, as the complexity of components increases, the requirement for maintenance management also increases. The standard routine for building maintenance is inspection which results in repairs or replacement when a fault is found. This routine leads to unnecessary inspections which have a cost with respect to downtime of a component and work hours. This research proposes an alternative routine: performing building maintenance at the point in time when the component is degrading and requires maintenance, thus reducing the frequency of unnecessary inspections. This thesis demonstrates that statistical techniques can be used as part of a maintenance management methodology to invoke maintenance before failure occurs. The proposed FM process is presented through a scenario utilising current Building Information Modelling (BIM) technology and innovative contractual and organisational models. This FM scenario supports a Degradation based Maintenance (DbM) scheduling methodology, implemented using two statistical techniques, Particle Filters (PFs) and Gaussian Processes (GPs). DbM consists of extracting and tracking a degradation metric for a component. Limits for the degradation metric are identified based on one of a number of proposed processes. These processes determine the limits based on the maturity of the historical information available. DbM is implemented for three case study components: a heat exchanger; a heat pump; and a set of bearings. The identified degradation points for each case study, from a PF, a GP and a hybrid (PF and GP combined) DbM implementation are assessed against known degradation points. The GP implementations are successful for all components. For the PF implementations, the results presented in this thesis find that the extracted metrics and limits identify degradation occurrences accurately for components which are in continuous operation. For components which have seasonal operational periods, the PF may wrongly identify degradation. The GP performs more robustly than the PF, but the PF, on average, results in fewer false positives. The hybrid implementations, which are a combination of GP and PF results, are successful for 2 of 3 case studies and are not affected by seasonal data. Overall, DbM is effectively applied for the three case study components. The accuracy of the implementations is dependant on the relationships modelled by the PF and GP, and on the type and quantity of data available. This novel maintenance process can improve equipment performance and reduce energy wastage from BSCs operation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deep fat frying process is one of the widely followed cooking practices throughout the world. Cooking oils serve as a medium for frying food for transferring heat and makes fried food tasty and palatable. Frying process is a most complex process involving numerous physicochemical changes which are complicated to understand. Frying leads to thermal degradation of oil through thermo-oxidation, hydrolysis, and polymerization. Hydrolysis results in formation of free fatty acids whereas oxidation process produces hydroperoxides and small molecular carbonyl compounds. This whole process leads to the formation of polar compounds and degradation of antioxidants that further degrades frying oil. Eventually, through mass transfer process these degradation products accumulate into fried food and reduce the nutritional quality of both oil and food. Thus, the frying process is of research interest calls for detailed systematic study which is chosen for the present study. The primary objective of this study is to understand the mechanism of degradation and characterization ofdegraded products which helps in arriving at the limits for frying oil utilization in terms of number of frying cycles. The mechanistic studies and the knowledge on the degraded products help to understand the way to retard the deterioration of oil for stability and enhancement of frying cycles. The study also explores the formation of the predominant polar compounds and their structural elucidation through mass spectrometry. Oxidation of oil is another important factor that ignites the degradation phenomena. One of the best ways to increase thermal stability of any oil is addition of potent antioxidants. But, most of the natural and synthetic antioxidants are unstable and ineffective at frying temperatures. Therefore, it is necessary to screen alternative antioxidants for their activity in the refined oils which are devoid of any added antioxidants. In this context, this study discussed the efficacy of several natural and synthetic antioxidants to retard the formation of polar compounds and thermooxidation during prolonged frying conditions. Similarly, the advantage of blending of two different oils to improve the thermal stability was explored. The present study brings out the total picture on the type of degradation products formed during frying and the ways of retarding the determination to improve upon the stability of the oil and enhancement of frying cycles.