955 resultados para DETECTION CELL
Resumo:
Somatostatin receptor 2 (SSTR2) is expressed by most medulloblastomas (MEDs). We isolated monoclonal antibodies (MAbs) to the 12-mer (33)QTEPYYDLTSNA(44), which resides in the extracellular domain of the SSTR2 amino terminus, screened the peptide-bound MAbs by fluorescence microassay on D341 and D283 MED cells, and demonstrated homogeneous cell-surface binding, indicating that all cells expressed cell surface-detectable epitopes. Five radiolabeled MAbs were tested for immunoreactive fraction (IRF), affinity (KA) (Scatchard analysis vs. D341 MED cells), and internalization by MED cells. One IgG(3) MAb exhibited a 50-100% IRF, but low KA. Four IgG(2a) MAbs had 46-94% IRFs and modest KAs versus intact cells (0.21-1.2 x 10(8) M(-1)). Following binding of radiolabeled MAbs to D341 MED at 4 degrees C, no significant internalization was observed, which is consistent with results obtained in the absence of ligand. However, all MAbs exhibited long-term association with the cells; binding at 37 degrees C after 2 h was 65-66%, and after 24 h, 52-64%. In tests with MAbs C10 and H5, the number of cell surface receptors per cell, estimated by Scatchard and quantitative FACS analyses, was 3.9 x 10(4) for the "glial" phenotype DAOY MED cell line and 0.6-8.8 x 10(5) for four neuronal phenotype MED cell lines. Our results indicate a potential immunotherapeutic application for these MAbs.
Resumo:
Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.
Resumo:
While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.
Resumo:
DNaseI footprinting is an established assay for identifying transcription factor (TF)-DNA interactions with single base pair resolution. High-throughput DNase-seq assays have recently been used to detect in vivo DNase footprints across the genome. Multiple computational approaches have been developed to identify DNase-seq footprints as predictors of TF binding. However, recent studies have pointed to a substantial cleavage bias of DNase and its negative impact on predictive performance of footprinting. To assess the potential for using DNase-seq to identify individual binding sites, we performed DNase-seq on deproteinized genomic DNA and determined sequence cleavage bias. This allowed us to build bias corrected and TF-specific footprint models. The predictive performance of these models demonstrated that predicted footprints corresponded to high-confidence TF-DNA interactions. DNase-seq footprints were absent under a fraction of ChIP-seq peaks, which we show to be indicative of weaker binding, indirect TF-DNA interactions or possible ChIP artifacts. The modeling approach was also able to detect variation in the consensus motifs that TFs bind to. Finally, cell type specific footprints were detected within DNase hypersensitive sites that are present in multiple cell types, further supporting that footprints can identify changes in TF binding that are not detectable using other strategies.
Resumo:
Intraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1 × 1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden's index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.
Resumo:
UNLABELLED: Amplification of the MET oncogene is associated with poor prognosis, metastatic dissemination, and drug resistance in many malignancies. We developed a method to capture and characterize circulating tumor cells (CTC) expressing c-MET using a ferromagnetic antibody. Immunofluorescence was used to characterize cells for c-MET, DAPI, and pan-CK, excluding CD45(+) leukocytes. The assay was validated using appropriate cell line controls spiked into peripheral blood collected from healthy volunteers (HV). In addition, peripheral blood was analyzed from patients with metastatic gastric, pancreatic, colorectal, bladder, renal, or prostate cancers. CTCs captured by c-MET were enumerated, and DNA FISH for MET amplification was performed. The approach was highly sensitive (80%) for MET-amplified cells, sensitive (40%-80%) for c-MET-overexpressed cells, and specific (100%) for both c-MET-negative cells and in 20 HVs. Of 52 patients with metastatic carcinomas tested, c-MET CTCs were captured in replicate samples from 3 patients [gastric, colorectal, and renal cell carcinoma (RCC)] with 6% prevalence. CTC FISH demonstrated that MET amplification in both gastric and colorectal cancer patients and trisomy 7 with gain of MET gene copies in the RCC patient. The c-MET CTC assay is a rapid, noninvasive, sensitive, and specific method for detecting MET-amplified tumor cells. CTCs with MET amplification can be detected in patients with gastric, colorectal, and renal cancers. IMPLICATIONS: This study developed a novel c-MET CTC assay for detecting c-MET CTCs in patients with MET amplification and warrants further investigation to determine its clinical applicability. Mol Cancer Res; 14(6); 539-47. ©2016 AACR.
Resumo:
Coccolithophores are the largest source of calcium carbonate in the oceans and are considered to play an important role in oceanic carbon cycles. Current methods to detect the presence of coccolithophore blooms from Earth observation data often produce high numbers of false positives in shelf seas and coastal zones due to the spectral similarity between coccolithophores and other suspended particulates. Current methods are therefore unable to characterise the bloom events in shelf seas and coastal zones, despite the importance of these phytoplankton in the global carbon cycle. A novel approach to detect the presence of coccolithophore blooms from Earth observation data is presented. The method builds upon previous optical work and uses a statistical framework to combine spectral, spatial and temporal information to produce maps of coccolithophore bloom extent. Validation and verification results for an area of the north east Atlantic are presented using an in situ database (N = 432) and all available SeaWiFS data for 2003 and 2004. Verification results show that the approach produces a temporal seasonal signal consistent with biological studies of these phytoplankton. Validation using the in situ coccolithophore cell count database shows a high correct recognition rate of 80% and a low false-positive rate of 0.14 (in comparison to 63% and 0.34 respectively for the established, purely spectral approach). To guide its broader use, a full sensitivity analysis for the algorithm parameters is presented.
Resumo:
The dinoflagellate genus Alexandrium contains several toxin producing species and strains, which can cause major economic losses to the shell fish industry. It is therefore important to be able to detect these toxin producers and also distinguish toxic strains from some of the morphologically identical non-toxic strains. To facilitate this DNA probes to be used in a microarray format were designed in silico or developed from existing published probes. These probes targeted either the 18S or 28S ribosomal ribonucleic acid (rRNA) gene in Alexandrium tamarense Group I, Group III and Group IV, Alexandrium ostenfeldii and Alexandrium minutum. Three strains of A. tamarense Group I, A. tamarense Group III, A. minutum and two strains of A. ostenfeldii were grown at optimal conditions and transferred into new environmental conditions changing either the light intensity, salinity, temperature or nutrient concentrations, to check if any of these environmental conditions induced changes in the cellular ribonucleic acid (RNA) concentration or growth rate. The aim of this experiment was the calibration of several species-specific probes for the quantification of the toxic Alexandrium strains. Growth rates were highly variable but only elevated or lowered salinity significantly lowered growth rate for A. tamarense Group I and Group III; differences in RNA content were not significant for the majority of the treatments. Only light intensity seemed to affect significantly the RNA content in A. tamarense Group I and Group III, but this was still within the same range as for the other treatments meaning that a back calibration from RNA to cell numbers was possible. The designed probes allow the production of quantitative information for Alexandrium species for the microarray chip.
Resumo:
Harmful algal blooms (HAB) occur worldwide and cause health problems and economic damage to fisheries and tourism. Monitoring for toxic algae is therefore essential but is based primarily on light microscopy, which is time consuming and can be limited by insufficient morphological characters such that more time is needed to examine critical features with electron microscopy. Monitoring with molecular tools is done in only a few places world-wide. EU FP7 MIDTAL (Microarray Detection of Toxic Algae) used SSU and LSU rRNA genes as targets on microarrays to identify toxic species. In order to comply with current monitoring requirements to report cell numbers as the relevant threshold measurement to trigger closure of fisheries, it was necessary to calibrate our microarray to convert the hybridisation signal obtained to cell numbers. Calibration curves for two species of Pseudo-nitzschia for use with the MIDTAL microarray are presented to obtain cell numbers following hybridisation. It complements work presented by Barra et al. (2012b. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1330-1v) for two other Pseudo-nitzschia spp., Dittami and Edvardsen (2012a. J. Phycol. 48, 1050) for Pseudochatonella, Blanco et al. (2013. Harmful Algae 24, 80) for Heterosigma, McCoy et al. (2013. FEMS. doi: 10.1111/1574-6941.12277) for Prymnesium spp., Karlodinium veneficum, and cf. Chatonella spp. and Taylor et al. (2014. Harmful Algae, in press) for Alexandrium.
Resumo:
Oviductin is an oviduct-specific and high-molecular-weight glycoprotein that has been suggested to play important roles in the early events of reproduction. The present study was undertaken to localize the oviductin binding sites in the uterine epithelial cells of the golden hamster (Mesocricetus auratus) both in situ and in vitro, and to detect a hamster oviductin homologue in the female rat reproductive tract. Immunohistochemical localization of oviductin in the hamster uterus revealed certain uterine epithelial cells reactive to the monoclonal anti-hamster oviductin antibody. In order to study the interaction between hamster oviductin and the endometrium in vitro, a method for culturing primary hamster uterine epithelial cells has been established and optimized. Study with confocal microscopy of the cell culture system showed a labeling pattern similar to what was observed using immunohistochemistry. Pre-embedding immunolabeling of cultured uterine epithelial cells also showed gold particles associated with the plasma membrane and microvilli. These results demonstrated that hamster oviductin can bind to the plasma membrane of certain hamster uterine epithelial cells, suggesting the presence of a putative oviductin receptor on the uterine epithelial cell surface. In the second part of the present study, using the monoclonal anti-hamster oviductin antibody that cross-reacts with the rat tissue, we have been able to detect an oviduct-specific glycoprotein, with a molecular weight of 180~300kDa, in the female rat reproductive tract. Immunohistochemical labeling of the female rat reproductive tract revealed a strong immunolabeling in the non-ciliated oviductal epithelial cells and a faint immunoreaction on the cell surface of some uterine epithelial cells. Ultrastructurally, immunogold labeling was restricted to the secretory granules, Golgi apparatus, and microvilli of the non-ciliated secretory cells of the oviduct. In the uterus, immunogold labeling was observed on the cell surface of some uterine epithelial cells. Furthermore, electron micrographs of ovulated oocytes showed an intense immunolabeling for rat oviductin within the perivitelline space surrounding the ovulated oocytes. The findings of the present study demonstrated that oviductin is present in the rat oviduct and uterus, and it appears that, in the rat, oviductin is secreted by the non-ciliated secretory cells of the oviduct.
Resumo:
Recently, a chronic idiopathic disease of the esophagus has emerged, which is now known as eosinophilic esophagitis (EoE). Incomplete knowledge regarding the pathogenesis of EoE has limited treatment options. EoE is known to be a Th2-type immune-mediated disorder. Based on previous studies in both patients and experimental models, it is possible that an abnormal reaction to antigen mediates the pathophysiology of EoE. In this thesis, symptoms and signs unique to EoE were identified by an age-matched, case-controlled study of 326 patients with EoE and gastroesophageal reflux disease. The molecular mechanisms involved in antigen detection in the esophagus, in relation to EoE were then investigated. Esophageal epithelial cells were found, for the first time, to be capable of acting as non-professional antigen presenting cells, with the ability to engulf, process and present antigen on MHC class II to T helper lymphocytes. Antigen presentation by esophageal epithelial cells was induced by interferon-γ, which is increased in biopsies from patients with EoE. Next, it was discovered that esophageal epithelial cell lines expressed functional toll-like receptor (TLR) 2 and TLR3, but in esophageal mucosal biopsies only infiltrating immune cells (including eosinophils) expressed TLR2 and TLR3. Finally, the potential involvement of IgE in the pathogenesis of esophageal inflammation was investigated. IgE in the esophagus was found to be present on mast cells, which are increased in density in the esophageal mucosae of patients with EoE and especially those with a history of atopy. Mechanisms of antigen detection may mediate the pathophysiology of EoE in the esophagus through antigen presentation by epithelial cells, detection by TLRs on immune cells and detection through IgE on mucosal mast cells. Together, these findings demonstrate that mechanisms of antigen detection may actually contribute to the pathophysiology of EoE. Through increased understanding of the mechanisms of EoE, the results of this thesis may contribute to future therapy.
Resumo:
Polymerase chain reaction (PCR) assessment of clonal immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements is an important diagnostic tool in mature B-cell neoplasms. However, lack of standardized PCR protocols resulting in a high level of false negativity has hampered comparability of data in previous clonality studies. In order to address these problems, 22 European laboratories investigated the Ig/TCR rearrangement patterns as well as t(14;18) and t(11;14) translocations of 369 B-cell malignancies belonging to five WHO-defined entities using the standardized BIOMED-2 multiplex PCR tubes accompanied by international pathology panel review. B-cell clonality was detected by combined use of the IGH and IGK multiplex PCR assays in all 260 definitive cases of B-cell chronic lymphocytic leukemia (n¼56), mantle cell lymphoma (n¼54), marginal zone lymphoma (n¼41) and follicular lymphoma (n¼109). Two of 109 cases of diffuse large B-cell lymphoma showed no detectable clonal marker. The use of these techniques to assign cell lineage should be treated with caution as additional clonal TCR gene rearrangements were frequently detected in all disease categories. Our study indicates that the BIOMED-2 multiplex PCR assays provide a powerful strategy for clonality assessment in B-cell malignancies resulting in high Ig clonality detection rates particularly when IGH and IGK strategies are combined.
Resumo:
The phnA gene that encodes the carbon-phosphorus bond cleavage enzyme phosphonoacetate hydrolase is widely distributed in the environment, suggesting that its phosphonate substrate may play a significant role in biogeochemical phosphorus cycling. Surprisingly, however, no biogenic origin for phosphonoacetate has yet been established. To facilitate the search for its natural source we have constructed a whole-cell phosphonoacetate biosensor. The gene encoding the LysR-type transcriptional activator PhnR, which controls expression of the phosphonoacetate degradative operon in Pseudomonas fluorescens 23F, was inserted in the broad-host-range promoter probe vector pPROBE-NT, together with the promoter region of the structural genes. Cells of Escherichia coli DH5a that contained the resultant construct, pPANT3, exhibited phosphonoacetate-dependent green fluorescent protein fluorescence in response to threshold concentrations of as little as 0.5 µM phosphonoacetate, some 100 times lower than the detection limit of currently available non-biological analytical methods; the pPANT3 biosensor construct in Pseudomonas putida KT2440 was less sensitive, although with shorter response times. From a range of other phosphonates and phosphonoacetate analogues tested, only phosphonoacetaldehyde and arsonoacetate induced green fluorescent protein fluorescence in the E. coli DH5a (pPANT3) biosensor, although at much-reduced sensitivities (50 µM phosphonoacetaldehyde and 500 µM arsonoacetate).
Resumo:
An enzyme labeled immunosorbent assay (ELISA) and surface plasmon resonance (SPR) biosensor assay for the detection of paralytic shellfish poisoning (PSP) toxins were developed and a comparative evaluation was performed. A polyclonal antibody (BC67) used in both assay formats was raised to saxitoxin–jeffamine–BSA in New Zealand white rabbits. Each assay format was designed as an inhibition assay. Shellfish samples (n = 54) were evaluated by each method using two simple rapid extraction procedures and compared to the AOAC high performance liquid chromatography (HPLC) and the mouse bioassay (MBA). The results of each assay format were comparable with the HPLC and MBA methods and demonstrate that an antibody with high sensitivity and broad specificity to PSP toxins can be applied to different immunological techniques. The method of choice will depend on the end-users needs. The reduced manual labor and simplicity of operation of the SPR biosensor compared to ELISA, ease of sample extraction and superior real time semi-quantitative analysis are key features that could make this technology applicable in a high-throughput monitoring unit.
Resumo:
Microsatellite instability (MSI) is a characteristic molecular phenotype of tumors from the hereditary nonpolyposis colorectal cancer (Lynch) syndrome. Routine MSI screening of tumors in patients is an efficient prescreening tool for the population-based detection of Lynch syndrome in the absence of family cancer history. We describe here the optimization of a denaturing high performance liquid chromatography (DHPLC) assay for MSI analysis with the