983 resultados para Continuous positive airway pressure ventilation
Resumo:
Purpose: To evaluate the use of high frequency jet ventilation (HFJV) in patients undergoing percutanous thermal ablation procedures.Materials: From may to september 2011 patients with lung, liver or kidney tumors suitable for percutanous thermal ablation were prospectively enrolled to be treated under general anesthesia using HFJV instead of conventional positive pressure ventilation (PPV). Our primary endpoint was feasability of HFJV during percutanous ablation, our secondary endpoints were assessment of breathing related movements by image fusion (CT/US), precision and ease of needle placement by number of CT aquisition/needle reposition and procedure related complications.Results: Twenty-nine patients (21 males, 8 females mean age 66.2 years) with 30 liver tumors, 1 kidney tumors and 6 lung tumors were included. Tumor ablation was performed by radiofrequency (RFA) in 26 cases, microwaves ( MWA) in 2 and cryoablation (CRA) in 1. The ablation procedure could be completed under HFJV in 22 patients. In 2 patients HFVJ had to be stopped in favor of PPV because the tumor was better seen under PPV. HFJV was not performed in 5. Breathing related movements of the target lesion in the cranio-caudal direction as estimated by image fusion were always inferior to 5mm compared to 20mm when patients are under PPV. Needle placement was straightforward under CT as well as US. No patient needed needle repositionning before ablation. We did not observe any HFJV related complications.Conclusions: HFJV significantly reduces breathing movements of target lesion during percutaneous ablation procedures. It does not seem to cause any particular complication. However in some cases such as tumors located at the base of the lungs or in the dome of the liver, the target may be best seen under PPV.
Resumo:
INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is a new ventilatory mode in which ventilator settings are adjusted based on the electrical activity detected in the diaphragm (Eadi). This mode offers significant advantages in mechanical ventilation over standard pressure support (PS) modes, since ventilator input is determined directly from patient ventilatory demand. Therefore, it is expected that tidal volume (Vt) under NAVA would show better correlation with Eadi compared with PS, and exhibit greater variability due to the variability in the Eadi input to the ventilator. OBJECTIVES. To compare tidal volume variability in PS and NAVA ventilation modes, and its correlation with patient ventilatory demand (as characterized by maximum Eadi). METHODS. Acomparative study of patient-ventilator interaction was performed for 22 patients during standard PS with clinician determined ventilator settings; and NAVA, with NAVA gain set to ensure the same peak airway pressure as the total pressure obtained in PS. A 20 min continuous recording was performed in each ventilator mode. Respiratory rate, Vt, and Eadi were recorded. Tidal volume variance and Pearson correlation coefficient between Vt and Eadi were calculated for each patient. A periodogram was plotted for each ventilator mode and each patient, showing spectral power as a function of frequency to assess variability. RESULTS. Median, lower quartile and upper quartile values for Vt variance and Vt/Eadi correlation are shown in Table 1. The NAVA cohort exhibits substantially greater correlation and variance than the PS cohort. Power spectrums for Vt and Eadi are shown in Fig. 1 (PS and NAVA) for a typical patient. The enlarged section highlights how changes in Eadi are highly synchronized with NAVA ventilation, but less so for PS. CONCLUSIONS. There is greater variability in tidal volume and correlation between tidal volume and diaphragmatic electrical activity with NAVA compared to PS. These results are consistent with the improved patient-ventilator synchrony reported in the literature.
Resumo:
INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) [1] is a new spontaneousassisted ventilatory mode which uses the diaphragmatic electrical activity (Eadi) to pilot the ventilator. Eadi is used to initiate the ventilator's pressurization and cycling off. Delivered inspiratory assistance is proportional to Eadi. NAVA can improve patient-ventilator synchrony [2] compared to pressure support (PS), but little is known about its effect on minute ventilation and oxygenation. OBJECTIVES. To compare the effects of NAVA and PS on minute ventilation and oxygenation and to analyze potential determinant factors for oxygenation. METHODS. Comparison between two 20-min periods under NAVA and PS. NAVA gain (proportionality factor between Eadi and delivered pressure) set as to obtain the same peak pressure as in PS. FIO2 and positive end-expiratory pressure (PEEP) were the same in NAVA and PS. Blood gas analyses were performed at the end of both recording periods. Statistical analysis: groups were compared with paired t tests or non parametric Wilcoxon signed-rank tests. p\0.05 was considered significant. RESULTS. [Mean ± SD]: 22 patients (age 66 ± 12 year, 7 M/15F, BMI 23.4 ± 3.1 kg/m2), 8 patients with COPD. Initial settings: PS 13 ± 3 cmH2O, PEEP 7 ± 2 cmH2O, NAVA gain 2.2 ± 1.8. Minute ventilation and PaCO2 were the same with both modes (p = 0.296 and 0.848, respectively). Tidal volume was lower with NAVA (427 ± 102 vs. 477 ± 102 ml, p\0.001). In contrast respiratory rate was higher with NAVA (25.6 ± 9.5 vs. 22.3 ± 8.9 cycles/min). Arterial oxygenation was improved with NAVA (PaO2 85.1 ± 28.9 vs. 75.8 ± 11.9 mmHg, p = 0.017, PaO2/FIO2 210 ± 53 vs. 195 ± 58 mmHg, p = 0.019). Neural inspiratory time (Tin) was comparable between NAVA and PS (p = 0.566). Among potential determinant factors for oxygenation, mean airway pressure (Pmean) was lower with NAVA (10.6 ± 2.6 vs. 11.1 ± 2.4 cmH2O, p = 0.006), as was the pressure time product (PTP) (6.8 ± 3.0 vs. 9.2 ± 3.5 cmH2O 9 s, p = 0.004). There were less asynchrony events with NAVA (2.3 ± 2.0 vs. 4.4 ± 3.8, p = 0.009).Tidal volume variability was higher with NAVA (variation coefficient: 30 ± 19.5 vs. 13.5 ± 8.6, p\0.001). Inspiratory time in excess (Tiex) was lower with NAVA (56 ± 23 vs. 202 ± 200 ms, p = 0.001). CONCLUSION. Despite lower Pmean and PTP in NAVA, arterial oxygenation was improved compared to PS. As asynchronies may be associated with an increased work of breathing and a higher oxygen consumption, their decrease in number with NAVA could be an explanation for oxygenation improvement. Another explanation could be the increase in VT variability. Further studies should now be performed to confirm the potential of NAVA in improving arterial oxygenation and explore the underlying mechanisms.
Resumo:
This paper describes a one-month-old girl presenting with respiratory and growth failure due to diaphragmatic paralysis associated with left brachial plexus palsy after forceps delivery. Despite continuous positive pressure ventilation and nasogastric feeding, the situation did not improve and a laparoscopic diaphragmatic plication had to be performed. When dealing with a child born with brachial plexus palsy, one must think of this possible association and if necessary proceed to the complementary radiological examinations. The treatment must avoid complications like feeding difficulties and failure to thrive, respiratory infections or atelectasis. It includes intensive support and a good evaluation of the prognosis of the lesion to decide the best moment for a surgical therapy.
Resumo:
Evaluar si el Heliox reduce la resistencia en la vía aérea en niños y adolescentes con patología bronquial obstructiva que requieren ventilación mecánica. Materiales y Métodos: Estudio prospectivo observacional descriptivo en niños y adolescentes con patología bronquial obstructiva y ventilación mecánica con Fi02 ≤ 0,5. Medición de variables: resistencia, presión pico, presión media de la vía aérea, presión meseta, volumen corriente, autoPEEP, distensibilidad, PetCO2, ventilación de espacio muerto antes de inicio de heliox y a los 30 minutos, 2, 4, 6, 12, 18 y 24 horas y diariamente hasta suspenderlo por extubación o FiO2 > 0,5. Resultados: Resultados parciales, incluyó 9 pacientes encontrando descenso significativo de resistencia espiratoria a los 30 minutos (51,2 vs 32,3; p=0,0008 ), 2 horas ( 51,2 vs 33,4; p=0,0019) y 4 horas (51,2 vs 30,7; p=0,0012) así como de la resistencia inspiratoria a la hora 2 (48,6 vs 36,2; p = 0,013) y hora 4 (48,6 vs 30 ; p=0,004). Se observó tendencia al descenso de la PetCO2 que no fue significativa (52,3 vs 34,3: p=0,06). No se evidenció cambios en las variables; autoPEEP, presión pico, presión media de la vía aérea, distensibilidad, ventilación de espacio muerto, presión meseta y volumen corriente antes y después del inicio del Heliox. Conclusión: La ventilación mecánica con Heliox en niños con patología bronquial obstructiva parece ser que reduce de manera significativa la resistencia de la vía aérea, con tendencia al descenso de la PetC02. Se necesitan estudios prospectivos al menos observacionales analíticos que corroboren estos hallazgos.
Resumo:
Background: The Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) have a impact on the respiratory system and the recommendations for mechanical ventilation of patients with IAH/ACS remain unclear. Our study characterize the influence of elevated intra-abdominal pressure (IAP) and positive end-expiratory pressure (PEEP) on airway plateau pressure (PPLAT) and bladder pressure (PBLAD). Methods: Nine (n=9) deeply anesthetized swine were mechanically ventilated via tracheostomy: volume-controlled mode at tidal volume = 10 ml/kg, frequency=15, Inspiratory:Expiratory ratio=1:2 and PEEP of 1 and 10 cmH2O (PEEP1 and PEEP10, respectively). A tracheostomy tube was place in the peritoneal cavity and different levels of IAP were applied utilizing a CPAP system. Measurements were performed during both PEEP1 and PEEP10. Results: PBLAD increased as experimental IAP rose. Minimal underestimation of IAP by PBLAD was observed. Applying PEEP10 did not significantly affect the correlation between experimental IAP and PBLAD. PBLAD (in cmH2O) was reflected by changes in PPLAT regardless of the PEEP.
Resumo:
This paper discusses experimental and theoretical investigations and Computational Fluid Dynamics (CFD) modelling considerations to evaluate the performance of a square section wind catcher system connected to the top of a test room for the purpose of natural ventilation. The magnitude and distribution of pressure coefficients (C-p) around a wind catcher and the air flow into the test room were analysed. The modelling results indicated that air was supplied into the test room through the wind catcher's quadrants with positive external pressure coefficients and extracted out of the test room through quadrants with negative pressure coefficients. The air flow achieved through the wind catcher depends on the speed and direction of the wind. The results obtained using the explicit and AIDA implicit calculation procedures and CFX code correlate relatively well with the experimental results at lower wind speeds and with wind incidents at an angle of 0 degrees. Variation in the C-p and air flow results were observed particularly with a wind direction of 45 degrees. The explicit and implicit calculation procedures were found to be quick and easy to use in obtaining results whereas the wind tunnel tests were more expensive in terms of effort, cost and time. CFD codes are developing rapidly and are widely available especially with the decreasing prices of computer hardware. However, results obtained using CFD codes must be considered with care, particularly in the absence of empirical data.
Resumo:
Background: The quasispecies composition of Hepatitis C virus (HCV) could have important implications with regard to viral persistence and response to interferon-based therapy. The complete NS5A was analyzed to evaluate whether the composition of NS5A quasispecies of HCV 1a/1b is related to responsiveness to combined interferon pegylated (PEG-IFN) and ribavirin therapy.Methods: Viral RNA was isolated from serum samples collected before, during and after treatment from virological sustained responder (SVR), non-responder (NR) and the end-of-treatment responder patients (ETR). NS5A region was amplified, cloned and sequenced. Six hundred and ninety full-length NS5A sequences were analyzed.Results: This study provides evidence that lower nucleotide diversity of the NS5A region pre-therapy is associated with viral clearance. Analysis of samples of NRs and the ETRs time points showed that genetic diversity of populations tend to decrease over time. Post-therapy population of ETRs presented higher genetic distance from baseline probably due to the bottleneck phenomenon observed for those patients in the end of treatment. The viral effective population of those patients also showed a strong decrease after therapy. Otherwise, NRs demonstrated a continuous variation or stability of effective populations and genetic diversity over time that did not seem to be related to therapy. Phylogenetic relationships concerning complete NS5A sequences obtained from patients did not demonstrate clustering associated with specific response patterns. However, distinctive clustering of pre/post-therapy sequences was observed. In addition, the evolution of quasispecies over time was subjected to purifying or relaxed purifying selection. Codons 157 (P03), 182 and 440 (P42), 62 and 404 (P44) were found to be under positive selective pressure but it failed to be related to the therapy.Conclusion: These results confirm the hypothesis that a relationship exists between NS5A heterogeneity and response to therapy in patients infected with chronic hepatitis C. © 2013 Jardim et al.; licensee BioMed Central Ltd.
Resumo:
Objectives: The effectiveness of noninvasive positive-pressure ventilation in preventing reintubation due to respiratory failure in children remains uncertain. A pilot study was designed to evaluate the frequency of extubation failure, develop a randomization approach, and analyze the feasibility of a powered randomized trial to compare noninvasive positive-pressure ventilation and standard oxygen therapy post extubation for preventing reintubation within 48 hours in children with respiratory failure.Design: Prospective pilot study.Setting: PICU at a university-affiliated hospital.Patients: Children aged between 28 days and 3 years undergoing invasive mechanical ventilation for greater than or equal to 48 hours with respiratory failure after programmed extubation.Interventions: Patients were prospectively enrolled and randomly assigned into noninvasive positive-pressure ventilation group and inhaled oxygen group after programmed extubation from May 2012 to May 2013.Measurements and Main Results: Length of stay in PICU and hospital, oxygenation index, blood gas before and after tracheal extubation, failure and reason for tracheal extubation, complications, mechanical ventilation variables before tracheal extubation, arterial blood gas, and respiratory and heart rates before and 1 hour after tracheal extubation were analyzed. One hundred eight patients were included (noninvasive positive-pressure ventilation group, n = 55 and inhaled oxygen group, n = 53), with 66 exclusions. Groups did not significantly differ for gender, age, disease severity, Pediatric Risk of Mortality at admission, tracheal intubation, and mechanical ventilation indications. There was no statistically significant difference in reintubation rate (noninvasive positive-pressure ventilation group, 9.1%; inhaled oxygen group, 11.3%; p > 0.05) and length of stay (days) in PICU (noninvasive positive-pressure ventilation group, 3 [116]; inhaled oxygen group, 2 [1-25]; p > 0.05) or hospital (noninvasive positive-pressure ventilation group, 19 [7-141]; inhaled oxygen group, 17 [8-80]).Conclusions: The study indicates that a larger randomized trial comparing noninvasive positive-pressure ventilation and standard oxygen therapy in children with respiratory failure is feasible, providing a basis for a future trial in this setting. No differences were seen between groups. The number of excluded patients was high.
Resumo:
We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1 beta, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1 beta, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.
Resumo:
OBJECTIVES: A number of complications exist with invasive mechanical ventilation and with the use of and withdrawal from prolonged ventilator support. The use of protocols that enable the systematic identification of patients eligible for an interruption in mechanical ventilation can significantly reduce the number of complications. This study describes the application of a weaning protocol and its results. METHODS: Patients who required invasive mechanical ventilation for more than 24 hours were included and assessed daily to identify individuals who were ready to begin the weaning process. RESULTS: We studied 252 patients with a median mechanical ventilation time of 3.7 days (interquartile range of 1 to 23 days), a rapid shallow breathing index value of 48 (median), a maximum inspiratory pressure of 40 cmH2O, and a maximum expiratory pressure of 40 cm H2O (median). Of these 252 patients, 32 (12.7%) had to be reintubated, which represented weaning failure. Noninvasive ventilation was used postextubation in 170 (73%) patients, and 15% of these patients were reintubated, which also represented weaning failure. The mortality rate of the 252 patients studied was 8.73% (22), and there was no significant difference in the age, gender, mechanical ventilation time, and maximum inspiratory pressure between the survivors and nonsurvivors. CONCLUSIONS: The use of a specific weaning protocol resulted in a lower mechanical ventilation time and an acceptable reintubation rate. This protocol can be used as a comparative index in hospitals to improve the weaning system, its monitoring and the informative reporting of patient outcomes and may represent a future tool and source of quality markers for patient care.
Resumo:
Purpose: Automated weaning modes are available in some mechanical ventilators, but no studies compared them hitherto. We compared the performance of 3 automated modes under standard and challenging situations. Methods: We used a lung simulator to compare 3 automated modes, adaptive support ventilation (ASV), mandatory rate ventilation (MRV), and Smartcare, in 6 situations, weaning success, weaning failure, weaning success with extreme anxiety, weaning success with Cheyne-Stokes, weaning success with irregular breathing, and weaning failure with ineffective efforts. Results: The 3 modes correctly recognized the situations of weaning success and failure, even when anxiety or irregular breathing were present but incorrectly recognized weaning success with Cheyne-Stokes. MRV incorrectly recognized weaning failure with ineffective efforts. Time to pressure support (PS) stabilization was shorter for ASV (1-2 minutes for all situations) and MRV (1-7 minutes) than for Smartcare (8-78 minutes). ASV had higher rates of PS oscillations per 5 minutes (4-15), compared with Smartcare (0-1) and MRV (0-12), except when extreme anxiety was present. Conclusions: Smartcare, ASV, and MRV were equally able to recognize weaning success and failure, despite the presence of anxiety or irregular breathing but performed incorrectly in the presence of Cheyne-Stokes. PS behavior over the time differs among modes, with ASV showing larger and more frequent PS oscillations over the time. Clinical studies are needed to confirm our results. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Die zuverlässige Berechnung von quantitativen Parametern der Lungenventilation ist für ein Verständnis des Verhaltens der Lunge und insbesondere für die Diagnostik von Lungenerkrankungen von großer Bedeutung. Nur durch quantitative Parameter sind verlässliche und reproduzierbare diagnostische Aussagen über den Gesundheitszustand der Lunge möglich. Im Rahmen dieser Arbeit wurden neue quantitative Verfahren zur Erfassung der Lungenventilation basierend auf der dynamischen Computer- (CT) und Magnetresonanztomographie (MRT) entwickelt. Im ersten Teil dieser Arbeit wurde die Frage untersucht, ob das Aufblähen der Lunge in gesunden Schweinelungen und Lungen mit Akutem Lungenversagen (ARDS) durch einzelne, diskrete Zeitkonstanten beschrieben werden kann, oder ob kontinuierliche Verteilungen von Zeitkonstanten die Realität besser beschreiben. Hierzu wurden Serien dynamischer CT-Aufnahmen während definierter Beatmungsmanöver (Drucksprünge) aufgenommen und anschließend aus den Messdaten mittels inverser Laplace-Transformation die zugehörigen Verteilungen der Zeitkonstanten berechnet. Um die Qualität der Ergebnisse zu analysieren, wurde der Algorithmus im Rahmen von Simulationsrechnungen systematisch untersucht und anschließend in-vivo an gesunden und ARDS-Schweinelungen eingesetzt. Während in den gesunden Lungen mono- und biexponentielle Verteilungen bestimmt wurden, waren in den ARDS-Lungen Verteilungen um zwei dominante Zeitkonstanten notwendig, um die gemessenen Daten auf der Basis des verwendeten Modells verlässlich zu beschreiben. Es wurden sowohl diskrete als auch kontinuierliche Verteilungen gefunden. Die CT liefert Informationen über das solide Lungengewebe, während die MRT von hyperpolarisiertem 3He in der Lage ist, direkt das eingeatmete Gas abzubilden. Im zweiten Teil der Arbeit wurde zeitlich hochaufgelöst das Einströmen eines 3He-Bolus in die Lunge erfasst. Über eine Entfaltungsanalyse wurde anschließend das Einströmverhalten unter Idealbedingungen (unendlich kurzer 3He-Bolus), also die Gewebeantwortfunktion, berechnet und so eine Messtechnik-unabhängige Erfassung des Einströmens von 3He in die Lunge ermöglicht. Zentrale Fragestellung war hier, wie schnell das Gas in die Lunge einströmt. Im Rahmen von Simulationsrechnungen wurde das Verhalten eines Entfaltungsalgorithmus (basierend auf B-Spline Repräsentationen) systematisch analysiert. Zusätzlich wurde ein iteratives Entfaltungsverfahren eingesetzt. Aus zeitlich hochaufgelösten Messungen (7ms) an einer gesunden und einer ARDS-Schweinelunge konnte erstmals nachgewiesen werden, dass das Einströmen in-vivo in weniger als 0,1s geschieht. Die Ergebnisse zeigen Zeitkonstanten im Bereich von 4ms–50ms, wobei zwischen der gesunden Lungen und der ARDS-Lunge deutliche Unterschiede beobachtet wurden. Zusammenfassend ermöglichen daher die in dieser Arbeit vorgestellten Algorithmen eine objektivere Bestimmung quantitativer Parameter der Lungenventilation. Dies ist für die eindeutige Beschreibung ventilatorischer Vorgänge in der Lunge und somit für die Lungendiagnostik unerlässlich. Damit stehen quantitative Methoden für die Lungenfunktionsdiagnostik zur Verfügung, deren diagnostische Relevanz im Rahmen wissenschaftlicher und klinischer Studien untersucht werden kann.
Resumo:
Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.
Resumo:
BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided.