978 resultados para CRYSTALLINE STRUCTURE
Resumo:
The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.
Resumo:
The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with in-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nanocomposite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of zirconia-based ordered mesoporous structures for catalytic applications is a research area under development. These systems are also potential candidates as anodes in intermediate temperature solid oxide fuel cells (it-SOFC) due to an enhancement on their surface area [1-4]. The structural features of mesoporous zirconia-ceria materials in combination with oxygen storage/release capacity (OSC) are crucial for various catalytic reactions. The direct use of hydrocarbons as fuel for the SOFC (instead of pure H2), without the necessity of reforming and purification reactors can improve global efficiency of these systems [4]. The X-ray diffraction data showed that ZrO2-x%CeO2 samples with x>50 are formed by a larger fraction of the cubic phase (spatial group Fm3m), while for x<50 the major crystalline structure is the tetragonal phase (spatial group P42/nmc). The crystallite size of the cubic phase increases with increase in ceria content. The tetragonal crystallite size decreases when ceria content increases. After impregnation, the Rietveld analysis showed a NiO content around 60wt.% for all samples. The lattice parameters for the ZrO2 tetragonal phase are lower for higher ZrO2 contents, while for all samples the cubic NiO and CeO2 parameters do not present changes. The calculated densities are higher for higher ceria content, as expected. The crystallite size of NiO are similar (~20nm) for all samples and 55nm for the NiO standard. Nitrogen adsorption experiments revealed a broader particle size distribution for higher CeO2 content. The superficial area values were around 35m2/g for all samples, the average pore diameter and pore volumes were higher when increasing ceria content. After NiO impregnation the particle size distribution was the same for all samples, with two pore sizes, the first around 3nm and a broader peak around 10nm. The superficial area increased to approximately 45m2/g for all samples, and the pore volume was also higher after impregnation and increased when ceria content increased. These results point up that the impregnation of NiO improves the textural characteristics of the pristine material. The complementary TEM/EDS images present a homogeneous coating of NiO particles over the ZrO2-x%CeO2 support, showing that these samples are excellent for catalysis applications. [1] D. Y. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279, 548-552 (1998). [2] C. Yu, Y. Yu, D. Zhao, Chem. Comm. 575-576 (2000). [3] A. Trovarelli, M. Boaro, E. Rocchini, C. de Leitenburg, G. Dolcetti, J. Alloys Compd. 323-324 (2001) 584-591. [4] S. Larrondo, M. A. Vidal, B. Irigoyen, A. F. Craievich, D. G. Lamas, I. O. Fábregas, et al. Catal. Today 107–108 (2005) 53-59.
Resumo:
Zirconia-ceria solid-solutions are extensively used as promoters for three-way catalysts, which are applied in the control of NOx, CO and hydrocarbons emission from automotive exhausts. In addition, thesematerials can be used as anodes in solid oxide fuel cells (SOFCs) operated with hydrocarbons. There areonly few works on ZrO2-CeO2 ordered mesoporous materials for catalytic applications and for anodes inSOFCs. The interest in these anodes relies on the fact that ZrO2-CeO2materials are mixed ionic/electronic conductors in reducing atmosphere and, therefore, fuel oxidation is produced on its entire surface, while it only occurs in the [anode/electrolyte/gas] interface (triple-phase boundaries) for electronic conductors. In this work, a synthesis method was developed usingZr and Ce chloride precursors, HCl aqueous solution, Pluronic P123 as the structure directing agent, NH4OH to adjust the pH (3-4) and a Teflon autoclave to perform hydrothermal treatment (80ºC/48 hours). The samples were dried and calcined, until 540ºC in N2and 4 hours in air. The X-ray diffraction data showed that powders with higher CeO2 content are formed by a larger fraction of the cubic CeO2 phase, while for a lower CeO2content the major crystalline structure is the tetragonal ZrO2 phase. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)×6H2O. The resulting powder was calcinated in air until 350ºC for 2 hours. Temperature-programmed reduction (TPR) data were collected in order to evaluate the reduction profiles of ZrO2-x%CeO2:Ni samples in H2/Ar atmosphere. Results showed lower reduction temperatures for all ceria content in samples comparing to a NiO standard.
Resumo:
In dieser Arbeit wurden die Phasenübergänge einer einzelnen Polymerkette mit Hilfe der Monte Carlo Methode untersucht. Das Bondfluktuationsmodell wurde zur Simulation benutzt, wobei ein attraktives Kastenpotential zwischen allen Monomeren der Polymerkette gewirkt hat. Drei Arten von Bewegungen sind eingeführt worden, um die Polymerkette richtig zu relaxieren. Diese sind die Hüpfbewegung, die Reptationsbewegung und die Pivotbewegung. Um die Volumenausschlußwechselwirkung zu prüfen und um die Anzahl der Nachbarn jedes Monomers zu bestimmen ist ein hierarchischer Suchalgorithmus eingeführt worden. Die Zustandsdichte des Modells ist mittels des Wang-Landau Algorithmus bestimmt worden. Damit sind thermodynamische Größen berechnet worden, um die Phasenübergänge der einzelnen Polymerkette zu studieren. Wir haben zuerst eine freie Polymerkette untersucht. Der Knäuel-Kügelchen Übergang zeigt sich als ein kontinuierlicher Übergang, bei dem der Knäuel zum Kügelchen zusammenfällt. Der Kügelchen-Kügelchen Übergang bei niedrigeren Temperaturen ist ein Phasenübergang der ersten Ordnung, mit einer Koexistenz des flüssigen und festen Kügelchens, das eine kristalline Struktur hat. Im thermodynamischen Limes sind die Übergangstemperaturen identisch. Das entspricht einem Verschwinden der flüssigen Phase. In zwei Dimensionen zeigt das Modell einen kontinuierlichen Knäuel-Kügelchen Übergang mit einer lokal geordneten Struktur. Wir haben ferner einen Polymermushroom, das ist eine verankerte Polymerkette, zwischen zwei repulsiven Wänden im Abstand D untersucht. Das Phasenverhalten der Polymerkette zeigt einen dimensionalen crossover. Sowohl die Verankerung als auch die Beschränkung fördern den Knäuel-Kügelchen Übergang, wobei es eine Symmetriebrechung gibt, da die Ausdehnung der Polymerkette parallel zu den Wänden schneller schrumpft als die senkrecht zu den Wänden. Die Beschränkung hindert den Kügelchen-Kügelchen Übergang, wobei die Verankerung keinen Einfluss zu haben scheint. Die Übergangstemperaturen im thermodynamischen Limes sind wiederum identisch im Rahmen des Fehlers. Die spezifische Wärme des gleichen Modells aber mit einem abstoßendem Kastenpotential zeigt eine Schottky Anomalie, typisch für ein Zwei-Niveau System.
Resumo:
Polystyrene latex particles modified at the surface with different hydrophilic functional groups were prepared by miniemulsion polymerization and applied to control the crystallization of zinc oxide in aqueous medium. The effects of both latex structure and concentration on the crystal growth, morphology, crystalline structure, and properties of the resulting zinc oxide were analyzed. Depending on the latex additive used, micro- and submicrosized crystals with a broad variety of morphologies were obtained. Among the studied latexes, the carboxyl-derived particles were shown to be a convenient system for further quantitative investigations. In this case, as the additive concentration increases, the aspect ratio of the crystals decreases systematically. Latex particles are assumed to adsorb preferentially onto the fast growing {001} faces of ZnO, interacting with the growth centers and reducing the growth rate in [001]. When zinc oxide is precipitated in the presence of latex, the polymer particles become incorporated into the growing crystals and polymer–inorganic hybrid materials are obtained. These materials are composed of an inorganic and largely undisturbed crystalline matrix in which organic latex particles are embedded. Increasing amounts of latex become incorporated into the growing crystals at increasing overall concentration in the crystallizing system. Photoluminescence (PL) spectra were measured to obtain information on defect centers. Emission spectra of all samples showed a narrow UV peak and a broad band in the green-yellow spectral region. The former emission is attributed to exciton recombination, whereas the latter seems to be related with deep-level donors. Latex appears to be a quencher of the visible emission of zinc oxide. Thus, compared to pure zincite, ZnO–latex hybrid materials show a significantly lower PL intensity in the visible range of the spectrum. Under continuous photoexcitation, a noticeable dynamic behavior of the PL is observed, which can be related to a photodesorption of adsorbed oxygen. These surface-adsorbed oxygen species seem to play a crucial role for the optical properties of the materials and may mediate the tunneling of electrons from the conduction band to preexisting deep-level traps, probably related to intrinsic defects (oxygen vacancies or interstitial zinc). The polymer particles can block the sites where oxygen adsorbs, and the disappearance of the “electron-shuttle” species leads to the observed quenching of the visible emission. Electron paramagnetic resonance (EPR) provided additional information about crystal defects with unpaired electrons. Spectra of all samples exhibit a single signal at g ≈ 1.96, typical for shallow donors. Contrary to the results of other authors, no correlation was possible between the EPR signal and the visible range of PL spectra, which suggests that centers responsible for the visible emission and the EPR signal are different.
Resumo:
Monte Carlo simulations are used to study the effect of confinement on a crystal of point particles interacting with an inverse power law potential in d=2 dimensions. This system can describe colloidal particles at the air-water interface, a model system for experimental study of two-dimensional melting. It is shown that the state of the system (a strip of width D) depends very sensitively on the precise boundary conditions at the two ``walls'' providing the confinement. If one uses a corrugated boundary commensurate with the order of the bulk triangular crystalline structure, both orientational order and positional order is enhanced, and such surface-induced order persists near the boundaries also at temperatures where the system in the bulk is in its fluid state. However, using smooth repulsive boundaries as walls providing the confinement, only the orientational order is enhanced, but positional (quasi-) long range order is destroyed: The mean-square displacement of two particles n lattice parameters apart in the y-direction along the walls then crosses over from the logarithmic increase (characteristic for $d=2$) to a linear increase (characteristic for d=1). The strip then exhibits a vanishing shear modulus. These results are interpreted in terms of a phenomenological harmonic theory. Also the effect of incommensurability of the strip width D with the triangular lattice structure is discussed, and a comparison with surface effects on phase transitions in simple Ising- and XY-models is made
Resumo:
ABSTRACT Corundum is one of the most famous gems materials. Different heat treatment methods for enhancement purposes are commonly applied and accepted in the gem market. With this reason, the identification of the natural, unheated corundum is intensively investigated. In this study, aluminium hydroxide minerals and zircon are focused to observe the crystallization and phase change of these minerals during heat treatment procedures. Aluminium hydroxide minerals can be transformed to alumina with the corundum structure by heating. The reaction history of aluminium hydroxide minerals containing corundum was investigated comparing it with diaspore, boehmite, gibbsite and bayerite by TG and DTA methods. These hydroxide minerals were entirely transformed to corundum after heating at 600°C. Zircon inclusions in corundums from Ilakaka, Madagascar, were investigated for the influence of different heat-treatment temperatures on the recovery of their crystalline structure and on possible reactions within and with the host crystals. The host corundum was heated at 500, 800, 1000, 1200, 1400, 1600 and 1800°C. The crystallinity, the trapped pressure, and the decomposition of the zircon inclusions within the host corundum have been investigated by Raman spectroscopy. Radiation-damaged zircon inclusions may be used as an indicator for unheated Ilakaka corundum crystals. They are fully recrystallized after heating at 1000°C influencing the lowering of the 3 Raman band shift, the decreasing of FWHM of the 3 Raman band and the decreasing of the trapped pressure between the inclusion and the host corundum. Under microscopic observation, surface alterations of the inclusions can be firstly seen from transparent into frosted-like appearance at 1400°C. Then, between 1600°C and 1800 °C, the inclusion becomes partly or even completely molten. The decomposition of the zircon inclusion to m-ZrO2 and SiO2-glass phases begins at the rim of the inclusion after heating from 1200°C to 1600°C which can be detected by the surface change, the increase of the 3 Raman band position and the trapped pressure. At 1800°C, the zircon inclusions entirely melt transforming to solid phases during cooling like m-ZrO2 and SiO2-glass accompanied by an increase of pressure between the transformed inclusion and its host.
Resumo:
One of the most diffused electronic device is the field effect transistor (FET), contained in number of billions in each electronic device. Organic optoelectronics is an emerging field that exploits the unique properties of conjugated organic materials to develop new applications that require a combination of performance, low cost and processability. Organic single crystals are the material with best performances and purity among the variety of different form of organic semiconductors. This thesis is focused on electrical and optical characterization of Rubrene single crystal bulk and thin films. Rubrene bulk is well known but for the first time we studied thin films. The first Current-voltage characterization has been performed for the first time on three Rubrene thin films with three different thickness to extract the charge carriers mobility and to assess its crystalline structure. As results we see that mobility increase with thickness. Field effect transistor based on Rubrene thin films on $SiO_2$ have been characterize by current-voltage (I-V) analyses (at several temperatures) and reveals a hopping conduction. Hopping behavior probably is due to the lattice mismatch with the substrate or intrinsic defectivity of the thin films. To understand effects of contact resistance we tested thin films with the Transmission Line Method (TLM) method. The TLM method revealeds that contact resistance is negligible but evidenced a Schottky behavior in a limited but well determined range of T. To avoid this effect we carried out annealing treatment after the electrode evaporation iswe performed a compete I-V characterization as a function of in temperature to extract the electronic density of states (DOS) distribution through the Space Charge Limited Current (SCLC) method. The results show a DOS with an exponential trenddistribution, as expected. The measured mobility of thin films is about 0.1cm^2/Vs and it increases with the film thickness. Further studies are necessary to investigate the reason and improve performances. From photocurrent spectrum we calculated an Eg of about 2.2eV and both thin films and bulk have a good crystal order. Further measurement are necessary to solve some open problems
Resumo:
In this thesis we are presenting a broadly based computer simulation study of two-dimensional colloidal crystals under different external conditions. In order to fully understand the phenomena which occur when the system is being compressed or when the walls are being sheared, it proved necessary to study also the basic motion of the particles and the diffusion processes which occur in the case without these external forces. In the first part of this thesis we investigate the structural transition in the number of rows which occurs when the crystal is being compressed by placing the structured walls closer together. Previous attempts to locate this transition were impeded by huge hysteresis effects. We were able to determine the transition point with higher precision by applying both the Schmid-Schilling thermodynamic integration method and the phase switch Monte Carlo method in order to determine the free energies. These simulations showed not only that the phase switch method can successfully be applied to systems with a few thousand particles and a soft crystalline structure with a superimposed pattern of defects, but also that this method is way more efficient than a thermodynamic integration when free energy differences are to be calculated. Additionally, the phase switch method enabled us to distinguish between several energetically very similar structures and to determine which one of them was actually stable. Another aspect considered in the first result chapter of this thesis is the ensemble inequivalence which can be observed when the structural transition is studied in the NpT and in the NVT ensemble. The second part of this work deals with the basic motion occurring in colloidal crystals confined by structured walls. Several cases are compared where the walls are placed in different positions, thereby introducing an incommensurability into the crystalline structure. Also the movement of the solitons, which are created in the course of the structural transition, is investigated. Furthermore, we will present results showing that not only the well-known mechanism of vacancies and interstitial particles leads to diffusion in our model system, but that also cooperative ring rotation phenomena occur. In this part and the following we applied Langevin dynamics simulations. In the last chapter of this work we will present results on the effect of shear on the colloidal crystal. The shear was implemented by moving the walls with constant velocity. We have observed shear banding and, depending on the shear velocity, that the inner part of the crystal breaks into several domains with different orientations. At very high shear velocities holes are created in the structure, which originate close to the walls, but also diffuse into the inner part of the crystal.
Resumo:
ab-initio Hartree Fock (HF), density functional theory (DFT) and hybrid potentials were employed to compute the optimized lattice parameters and elastic properties of perovskite 3-d transition metal oxides. The optimized lattice parameters and elastic properties are interdependent in these materials. An interaction is observed between the electronic charge, spin and lattice degrees of freedom in 3-d transition metal oxides. The coupling between the electronic charge, spin and lattice structures originates due to localization of d-atomic orbitals. The coupling between the electronic charge, spin and crystalline lattice also contributes in the ferroelectric and ferromagnetic properties in perovskites. The cubic and tetragonal crystalline structures of perovskite transition metal oxides of ABO3 are studied. The electronic structure and the physics of 3-d perovskite materials is complex and less well considered. Moreover, the novelty of the electronic structure and properties of these perovskites transition metal oxides exceeds the challenge offered by their complex crystalline structures. To achieve the objective of understanding the structure and property relationship of these materials the first-principle computational method is employed. CRYSTAL09 code is employed for computing crystalline structure, elastic, ferromagnetic and other electronic properties. Second-order elastic constants (SOEC) and bulk moduli (B) are computed in an automated process by employing ELASTCON (elastic constants) and EOS (equation of state) programs in CRYSTAL09 code. ELASTCON, EOS and other computational algorithms are utilized to determine the elastic properties of tetragonal BaTiO3, rutile TiO2, cubic and tetragonal BaFeO3 and the ferromagentic properties of 3-d transition metal oxides. Multiple methods are employed to crosscheck the consistency of our computational results. Computational results have motivated us to explore the ferromagnetic properties of 3-d transition metal oxides. Billyscript and CRYSTAL09 code are employed to compute the optimized geometry of the cubic and tetragonal crystalline structure of transition metal oxides of Sc to Cu. Cubic crystalline structure is initially chosen to determine the effect of lattice strains on ferromagnetism due to the spin angular momentum of an electron. The 3-d transition metals and their oxides are challenging as the basis functions and potentials are not fully developed to address the complex physics of the transition metals. Moreover, perovskite crystalline structures are extremely challenging with respect to the quality of computations as the latter requires the well established methods. Ferroelectric and ferromagnetic properties of bulk, surfaces and interfaces are explored by employing CRYSTAL09 code. In our computations done on cubic TMOs of Sc-Fe it is observed that there is a coupling between the crystalline structure and FM/AFM spin polarization. Strained crystalline structures of 3-d transition metal oxides are subjected to changes in the electromagnetic and electronic properties. The electronic structure and properties of bulk, composites, surfaces of 3-d transition metal oxides are computed successfully.
Resumo:
Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: Dispersion quality and macro-mechanical properties Nanomechanical properties at the surface and tensile properties CNC diameter and interphase thickness Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.
Resumo:
Emerging nanogenerators have attracted the attention of the research community, focusing on energy generation using piezoelectric nanomaterials. Nanogenerators can be utilized for powering NEMS/MEMS devices. Understanding the piezoelectric properties of ZnO one-dimensional materials such as ZnO nanobelts (NBs) and Nanowires (NWs) can have a significant impact on the design of new devices. The goal of this dissertation is to study the piezoelectric properties of one-dimensional ZnO nanostructures both experimentally and theoretically. First, the experimental procedure for producing the ZnO nanostructures is discussed. The produced ZnO nanostructures were characterized using an in-situ atomic force microscope and a piezoelectric force microscope. It is shown that the electrical conductivity of ZnO NBs is a function of applied mechanical force and its crystalline structure. This phenomenon was described in the context of formation of an electric field due to the piezoelectric property of ZnO NBs. In the PFM studies, it was shown that the piezoelectric response of the ZnO NBs depends on their production method and presence of defects in the NB. Second, a model was proposed for making nanocomposite electrical generators based on ZnO nanowires. The proposed model has advantages over the original configuration of nanogenerators which uses an AFM tip for bending the ZnO NWs. Higher stability of the electric source, capability for producing larger electric fields, and lower production costs are advantages of this configuration. Finally, piezoelectric properties of ZnO NBs were simulated using the molecular dynamics (MD) technique. The size-scale effect on piezoelectric properties of ZnO NBs was captured, and it is shown that the piezoelectric coefficient of ZnO NBs decreases by increasing their lateral dimensions. This phenomenon is attributed to the surface charge redistribution and compression of unit cells that are placed on the outer shell of ZnO NBs.
Resumo:
Designs for deep geological respositories of nuclear waste include bentonite as a hydraulic and chemisorption buffer material to protect the biosphere from leakage of radionuclides. Bentonite is chosen because it is a cheap, naturally occurring material with the required properties. It consists essentially of montmorillonite, a swelling clay mineral. Upon contact with groundwater such clays can seal the repository by incorporating water in the interlayers of their crystalline structure. The intercalated water exhibits significantly different properties to bulk water in the surrounding interparticle pores, such as lower diffusion coefficients (González Sánchez et. al. 2008). This doctoral thesis presents water distribution and diffusion behavior on various time and space scales in montmorillonite. Experimental results are presented for Na- and Cs-montmorillonite samples with a range of bulk dry densities (0.8 to 1.7 g/cm3). The experimental methods employed were neutron scattering (backscattering, diffraction, time-of-flight), adsorption measurements (water, nitrogen) and tracer-through diffusion. For the tracer experiments the samples were fully saturated via the liquid phase under volume-constrained conditions. In contrast, for the neutron scattering experiments, the samples were hydrated via the vapor phase and subsequently compacted, leaving a significant fraction of interparticle pores unfilled with water. Owing to these differences in saturation, the water contents of the samples for neutron scattering were characterized by gravimetry whereas those for the tracer experiments were obtained from the bulk dry density. The amount of surface water in interlayer pores could be successfully discriminated from the amount of bulk-like water in interparticle pores in Na- and Csmontmorillonite using neutron spectroscopy. For the first time in the literature, the distribution of water between these two pore environments was deciphered as a function of gravimetric water content. The amount was compared to a geometrical estimation of the amount of interlayer and interparticle water determined by neutron diffraction and adsorption measurements. The relative abundances of the 1 to 4 molecular water layers in the interlayer were determined from the area ratios of the (001)-diffraction peaks. Depending on the characterization method, different fractions of surface water and interlayer water were obtained. Only surface and interlayer water exists in amontmorillonite with water contents up to 0.18 g/g according to spectroscopic measurements and up to 0.32 g/g according to geometrical estimations, respectively. At higher water contents, bulk-like and interparticle water also exists. The amounts increase monotonically, but not linearly, from zero to 0.33 g/g for bulk-like water and to 0.43 g/g for interparticle water. It was found that water most likely redistributes between the surface and interlayer sites during the spectroscopic measurements and therefore the reported fraction is relevant only below about -10 ºC (Anderson, 1967). The redistribution effect can explain the discrepancy in fractions between the methods. In a novel approach the fractions of water in different pore environments were treated as a fixed parameter to derive local diffusion coefficients for water from quasielastic neutron scattering data, in particular for samples with high water contents. Local diffusion coefficients were obtained for the 1 to 4 molecular water layers in the interlayer of 0.5·10–9, 0.9·10–9, 1.5·10–9 and 1.4·10–9 m²/s, respectively, taking account of the different water fractions (molecular water layer, bulk-like water). The diffusive transport of 22Na and HTO through Na-montmorillonite was measured on the laboratory experimental scale (i.e. cm, days) by tracer through-diffusion experiments. We confirmed that diffusion of HTO is independent of the ionic strength of the external solution in contact with the clay sample but dependent on the bulk dry density. In contrast, the diffusion of 22Na was found to depend on both the ionic strength of the pore solution and on the bulk dry density. The ratio of the pore and surface diffusion could be experimentally determined for 22Na from the dependence of the diffusion coefficient on the ionic strength. Activation energies were derived from the temperaturedependent diffusion coefficients via the Arrhenius relation. In samples with high bulk dry density the activation energies are slightly higher than those of bulk water whereas in low density samples they are lower. The activation energies as a function of ionic strengths of the pore solutions are similar for 22Na and HTO. The facts that (i) the slope of the logarithmic effective diffusion coefficients as a function of the logarithmic ionic strength is less than unity for low bulk dry densities and (ii) two water populations can be observed for high gravimetric water contents (low bulk dry densities) support the interlayer and interparticle porosity model proposed by Glaus et al. (2007), Bourg et al. (2006, 2007) and Gimmi and Kosakowski (2011).
Resumo:
Ocean acidification caused by an increase in pCO2 is expected to drastically affect marine ecosystem composition, yet there is much uncertainty about the mechanisms through which ecosystems may be affected. Here we studied sea urchins that are common and important grazers in the Mediterranean (Paracentrotus lividus and Arbacia lixula). Our study included a natural CO2 seep plus reference sites in the Aegean Sea off Greece. The distribution of A. lixula was unaffected by the low pH environment, whereas densities of P. lividus were much reduced. There was skeletal degradation in both species living in acidified waters compared to reference sites and remarkable increases in skeletal manganese levels (P. lividus had a 541% increase, A. lixula a 243% increase), presumably due to changes in mineral crystalline structure. Levels of strontium and zinc were also altered. It is not yet known whether such dramatic changes in skeletal chemistry will affect coastal systems but our study reveals a mechanism that may alter inter-species interactions.