958 resultados para Bifurcation de col-noeud
Resumo:
We develop a transaction cost economics theory of the family firm, building upon the concepts of family-based asset specificity, bounded rationality, and bounded reliability. We argue that the prosperity and survival of family firms depend on the absence of a dysfunctional bifurcation bias. The bifurcation bias is an expression of bounded reliability, reflected in the de facto asymmetric treatment of family vs. nonfamily assets (especially human assets). We propose that absence of bifurcation bias is critical to fostering reliability in family business functioning. Our study ends the unproductive divide between the agency and stewardship perspectives of the family firm, which offer conflicting accounts of this firm type's functioning. We show that the predictions of the agency and stewardship perspectives can be usefully reconciled when focusing on how family firms address the bifurcation bias or fail to do so.
Resumo:
We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.
Resumo:
The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved
Resumo:
We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T(2) with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we study the Lyapunov stability and Hopf bifurcation in a biological system which models the biological control of parasites of orange plantations. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we study the Lyapunov stability and the Hopf bifurcation in a system coupling an hexagonal centrifugal governor with a steam engine. Here are given sufficient conditions for the stability of the equilibrium state and of the bifurcating periodic orbit. These conditions are expressed in terms of the physical parameters of the system, and hold for parameters outside a variety of codimension two. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this paper is to analyze the character of the first Hopf bifurcation (subcritical versus supercritical) that appears in a one-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We showed in the previous work [Arrieta et al., 2010] that if the delay is small, the unique non-negative equilibrium solution is asymptotically stable. We also showed that, as the delay increases and crosses certain critical value, this equilibrium becomes unstable and undergoes a Hopf bifurcation. This bifurcation is the first one of a cascade occurring as the delay goes to infinity. The structure of this cascade will depend on the parameters appearing in the equation. In this paper, we show that the first bifurcation that occurs is supercritical, that is, when the parameter is bigger than the delay bifurcation value, stable periodic orbits branch off from the constant equilibrium.
Resumo:
A atratividade e a preferência alimentar de adultos de Epicauta atomaria (Germ., 1821) por folhas de espécies de maracujazeiro Passiflora spp. foram avaliadas sob condições de laboratório. em testes de atratividade realizados em placas de Petri e olfatômetro, os discos foliares e extratos foliares de P. setacea e P. edulis f. flavicarpa foram os mais preferidos por adultos de E. atomaria, enquanto P. giberti, P. nitida e P. alata foram os menos preferidas nos dois tipos de recipientes. Nos testes de consumo com e sem chance de escolha utilizando discos foliares, P. setacea foi a mais consumida, confirmando sua suscetibilidade; P. giberti e P. nitida foram pouco consumidas, apresentando não-preferência para alimentação como mecanismo de resistência; P. edulis f. flavicarpa e P. alata também revelaram não-preferência para alimentação, porém em níveis mais baixos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we study the local codimension one and two bifurcations which occur in a family of three-dimensional vector fields depending on three parameters. An equivalent family, depending on five parameters, was recently proposed as a new chaotic system with a Lorenz-like butterfly shaped attractor and was studied mainly from a numerical point of view, for particular values of the parameters, for which computational evidences of the chaotic attractor was shown. In order to contribute to the understand of this new system we present an analytical study and the bifurcation diagrams of an equivalent three parameter system, showing the qualitative changes in the dynamics of its solutions, for different values of the parameters. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The aim of this study was to verify, in vivo and in vitro, the prevalence of root canal bifurcation in mandibular incisors by digital radiography. Material and Methods: Four hundred teeth were analyzed for the in vivo study. Digital radiographs were taken in an orthoradial direction from the mandibular incisor and canine regions. The digital radiographs of the canine region allowed visualizing the incisors in a distoradial direction using 20 degrees deviation. All individuals agreed to participate by signing an informed consent form. The in vitro study was conducted on 200 mandibular incisors positioned on a model, simulating the mandibular dental arch. Digital radiographs were taken from the mandibular incisors in both buccolingual and mesiodistal directions. Results: The digital radiography showed presence of bifurcation in 20% of teeth evaluated in vitro in the mesiodistal direction. In the buccolingual direction, 17.5% of teeth evaluated in vivo and 15% evaluated in vitro presented bifurcation or characteristics indicating bifurcation. Conclusions: Digital radiography associated with X-ray beam distally allowed detection of a larger number of cases of bifurcated root canals or characteristics of bifurcation.
Resumo:
In this paper we studied a non-ideal system with two degrees of freedom consisting of a dumped nonlinear oscillator coupled to a rotatory part. We investigated the stability of the equilibrium point of the system and we obtain, in the critical case, sufficient conditions in order to obtain an appropriate Normal Form. From this, we get conditions for the appearance of Hopf Bifurcation when the difference between the driving torque and the resisting torque is small. It was necessary to use the Bezout Theorem, a classical result of Algebraic Geometry, in the obtaining of the foregoing results. (C) 2003 Elsevier Ltd. All rights reserved.