178 resultados para Accelerometers
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
BACKGROUND: Moderate-to-vigorous physical activity (MVPA) is an important determinant of children’s physical health, and is commonly measured using accelerometers. A major limitation of accelerometers is non-wear time, which is the time the participant did not wear their device. Given that non-wear time is traditionally discarded from the dataset prior to estimating MVPA, final estimates of MVPA may be biased. Therefore, alternate approaches should be explored. OBJECTIVES: The objectives of this thesis were to 1) develop and describe an imputation approach that uses the socio-demographic, time, health, and behavioural data from participants to replace non-wear time accelerometer data, 2) determine the extent to which imputation of non-wear time data influences estimates of MVPA, and 3) determine if imputation of non-wear time data influences the associations between MVPA, body mass index (BMI), and systolic blood pressure (SBP). METHODS: Seven days of accelerometer data were collected using Actical accelerometers from 332 children aged 10-13. Three methods for handling missing accelerometer data were compared: 1) the “non-imputed” method wherein non-wear time was deleted from the dataset, 2) imputation dataset I, wherein the imputation of MVPA during non-wear time was based upon socio-demographic factors of the participant (e.g., age), health information (e.g., BMI), and time characteristics of the non-wear period (e.g., season), and 3) imputation dataset II wherein the imputation of MVPA was based upon the same variables as imputation dataset I, plus organized sport information. Associations between MVPA and health outcomes in each method were assessed using linear regression. RESULTS: Non-wear time accounted for 7.5% of epochs during waking hours. The average minutes/day of MVPA was 56.8 (95% CI: 54.2, 59.5) in the non-imputed dataset, 58.4 (95% CI: 55.8, 61.0) in imputed dataset I, and 59.0 (95% CI: 56.3, 61.5) in imputed dataset II. Estimates between datasets were not significantly different. The strength of the relationship between MVPA with BMI and SBP were comparable between all three datasets. CONCLUSION: These findings suggest that studies that achieve high accelerometer compliance with unsystematic patterns of missing data can use the traditional approach of deleting non-wear time from the dataset to obtain MVPA measures without substantial bias.
Resumo:
The ability to capture human motion allows researchers to evaluate an individual’s gait. Gait can be measured in different ways, from camera-based systems to Magnetic and Inertial Measurement Units (MIMU). The former uses cameras to track positional information of photo-reflective markers, while the latter uses accelerometers, gyroscopes, and magnetometers to measure segment orientation. Both systems can be used to measure joint kinematics, but the results vary because of their differences in anatomical calibrations. The objective of this thesis was to study potential solutions for reducing joint angle discrepancies between MIMU and camera-based systems. The first study worked to correct the anatomical frame differences between MIMU and camera-based systems via the joint angles of both systems. This study looked at full lower body correction versus correcting a single joint. Single joint correction showed slightly better alignment of both systems, but does not take into account that body segments are generally affected by more than one joint. The second study explores the possibility of anatomical landmarking using a single camera and a pointer apparatus. Results showed anatomical landmark position could be determined using a single camera, as the anatomical landmarks found from this study and a camera-based system showed similar results. This thesis worked on providing a novel way for obtaining anatomical landmarks with a single point-and-shoot camera, as well aligning anatomical frames between MIMUs and camera-based systems using joint angles.
Resumo:
Bridges are a critical part of North America’s transportation network that need to be assessed frequently to inform bridge management decision making. Visual inspections are usually implemented for this purpose, during which inspectors must observe and report any excess displacements or vibrations. Unfortunately, these visual inspections are subjective and often highly variable and so a monitoring technology that can provide quantitative measurements to supplement inspections is needed. Digital Image Correlation (DIC) is a novel monitoring technology that uses digital images to measure displacement fields without any contact with the bridge. In this research, DIC and accelerometers were used to investigate the dynamic response of a railway bridge reported to experience large lateral displacements. Displacements were estimated using accelerometer measurements and were compared to DIC measurements. It was shown that accelerometers can provide reasonable estimates of displacement for zero-mean lateral displacements. By comparing measurements in the girder and in the piers, it was shown that for the bridge monitored, the large lateral displacements originated in the steel casting bearings positioned above the piers, and not in the piers themselves. The use of DIC for evaluating the effectiveness of rehabilitation of the LaSalle Causeway lift bridge in Kingston, Ontario was also investigated. Vertical displacements were measured at midspan and at the lifting end of the bridge during a static test and under dynamic live loading. The bridge displacements were well within the operating limits, however a gap at the lifting end of the bridge was identified. Rehabilitation of the bridge was conducted and by comparing measurements before and after rehabilitation, it was shown that the gap was successfully closed. Finally, DIC was used to monitor the midspan vertical and lateral displacements in a monitoring campaign of five steel rail bridges. DIC was also used to evaluate the effectiveness of structural rehabilitation of the lateral bracing of a bridge. Simple finite element models are developed using DIC measurements of displacement. Several lessons learned throughout this monitoring campaign are discussed in the hope of aiding future researchers.
Resumo:
A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.
Resumo:
This paper presents the results of a real bridge field experiment, carried out on a fiber reinforced polymer (FRP) pedestrian truss bridge of which nodes are reinforced with stainless steel plates. The aim of this paper is to identify the dynamic parameters of this bridge by using both conventional techniques and a model updating algorithm. In the field experiment, the bridge was instrumented with accelerometers at a number of locations on the bridge deck, recording both vertical and transverse vibrations. It was excited via jump tests at particular locations along its span and the resulting acceleration signals are used to identify dynamic parameters, such as the bridge mode shape, natural frequency and damping constant. Pedestrianinduced vibrations are also measured and utilized to identify dynamic parameters of the bridge. For a complete analysis of the bridge, a numerical model of the FRP bridge is created whose properties are calibrated utilizing a model updating algorithm. Comparable frequencies and mode shapes to those from the experiment were obtained by the FE models considering the reinforcement by increasing elastic modulus at every node of the bridge by stainless steel plate. Moreover, considering boundary conditions at both ends as fixed in the model resulted in modal properties comparable/similar to those from the experiment. This study also demonstrated that the effect of reinforcement and boundary conditions must be properly considered in an FE model to analyze real behavior of the FRP bridge.
Resumo:
In cardiovascular disease the definition and the detection of the ECG parameters related to repolarization dynamics in post MI patients is still a crucial unmet need. In addition, the use of a 3D sensor in the implantable medical devices would be a crucial mean in the assessment or prediction of Heart Failure status, but the inclusion of such feature is limited by hardware and firmware constraints. The aim of this thesis is the definition of a reliable surrogate of the 500 Hz ECG signal to reach the aforementioned objective. To evaluate the worsening of reliability due to sampling frequency reduction on delineation performance, the signals have been consecutively down sampled by a factor 2, 4, 8 thus obtaining the ECG signals sampled at 250, 125 and 62.5 Hz, respectively. The final goal is the feasibility assessment of the detection of the fiducial points in order to translate those parameters into meaningful clinical parameter for Heart Failure prediction, such as T waves intervals heterogeneity and variability of areas under T waves. An experimental setting for data collection on healthy volunteers has been set up at the Bakken Research Center in Maastricht. A 16 – channel ambulatory system, provided by TMSI, has recorded the standard 12 – Leads ECG, two 3D accelerometers and a respiration sensor. The collection platform has been set up by the TMSI property software Polybench, the data analysis of such signals has been performed with Matlab. The main results of this study show that the 125 Hz sampling rate has demonstrated to be a good candidate for a reliable detection of fiducial points. T wave intervals proved to be consistently stable, even at 62.5 Hz. Further studies would be needed to provide a better comparison between sampling at 250 Hz and 125 Hz for areas under the T waves.
Resumo:
The recent trend on embedded system development opens a new prospect for applications that in the past were not possible. The eye tracking for sleep and fatigue detection has become an important and useful application in industrial and automotive scenarios since fatigue is one of the most prevalent causes of earth-moving equipment accidents. Typical applications such as cameras, accelerometers and dermal analyzers are present on the market but have some inconvenient. This thesis project has used EEG signal, particularly, alpha waves, to overcome them by using an embedded software-hardware implementation to detect these signals in real time
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
This paper is reviewing objective assessments of Parkinson’s disease(PD) motor symptoms, cardinal, and dyskinesia, using sensor systems. It surveys the manifestation of PD symptoms, sensors that were used for their detection, types of signals (measures) as well as their signal processing (data analysis) methods. A summary of this review’s finding is represented in a table including devices (sensors), measures and methods that were used in each reviewed motor symptom assessment study. In the gathered studies among sensors, accelerometers and touch screen devices are the most widely used to detect PD symptoms and among symptoms, bradykinesia and tremor were found to be mostly evaluated. In general, machine learning methods are potentially promising for this. PD is a complex disease that requires continuous monitoring and multidimensional symptom analysis. Combining existing technologies to develop new sensor platforms may assist in assessing the overall symptom profile more accurately to develop useful tools towards supporting better treatment process.
Resumo:
In the recent years, vibration-based structural damage identification has been subject of significant research in structural engineering. The basic idea of vibration-based methods is that damage induces mechanical properties changes that cause anomalies in the dynamic response of the structure, which measures allow to localize damage and its extension. Vibration measured data, such as frequencies and mode shapes, can be used in the Finite Element Model Updating in order to adjust structural parameters sensible at damage (e.g. Young’s Modulus). The novel aspect of this thesis is the introduction into the objective function of accurate measures of strains mode shapes, evaluated through FBG sensors. After a review of the relevant literature, the case of study, i.e. an irregular prestressed concrete beam destined for roofing of industrial structures, will be presented. The mathematical model was built through FE models, studying static and dynamic behaviour of the element. Another analytical model was developed, based on the ‘Ritz method’, in order to investigate the possible interaction between the RC beam and the steel supporting table used for testing. Experimental data, recorded through the contemporary use of different measurement techniques (optical fibers, accelerometers, LVDTs) were compared whit theoretical data, allowing to detect the best model, for which have been outlined the settings for the updating procedure.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
The partial collapse of a building in Colombia caused severe damage to its structural components -- An implosion was realized to induce the collapse of 50% of the deteriorated building -- To evaluate the influence of the implosion on the remaining structure, a monitoring survey was realized using triaxial accelerometers -- Time signals associated with ambient, seismic and forced vibration were obtained -- A study of the records in the time and the frequency domain was made -- The analysis of the information allowed determining some structural properties that were useful to calibrate the analytical model of the structure
Resumo:
Background Physical activity in children with intellectual disabilities is a neglected area of study, which is most apparent in relation to physical activity measurement research. Although objective measures, specifically accelerometers, are widely used in research involving children with intellectual disabilities, existing research is based on measurement methods and data interpretation techniques generalised from typically developing children. However, due to physiological and biomechanical differences between these populations, questions have been raised in the existing literature on the validity of generalising data interpretation techniques from typically developing children to children with intellectual disabilities. Therefore, there is a need to conduct population-specific measurement research for children with intellectual disabilities and develop valid methods to interpret accelerometer data, which will increase our understanding of physical activity in this population. Methods Study 1: A systematic review was initially conducted to increase the knowledge base on how accelerometers were used within existing physical activity research involving children with intellectual disabilities and to identify important areas for future research. A systematic search strategy was used to identify relevant articles which used accelerometry-based monitors to quantify activity levels in ambulatory children with intellectual disabilities. Based on best practice guidelines, a novel form was developed to extract data based on 17 research components of accelerometer use. Accelerometer use in relation to best practice guidelines was calculated using percentage scores on a study-by-study and component-by-component basis. Study 2: To investigate the effect of data interpretation methods on the estimation of physical activity intensity in children with intellectual disabilities, a secondary data analysis was conducted. Nine existing sets of child-specific ActiGraph intensity cut points were applied to accelerometer data collected from 10 children with intellectual disabilities during an activity session. Four one-way repeated measures ANOVAs were used to examine differences in estimated time spent in sedentary, moderate, vigorous, and moderate to vigorous intensity activity. Post-hoc pairwise comparisons with Bonferroni adjustments were additionally used to identify where significant differences occurred. Study 3: The feasibility on a laboratory-based calibration protocol developed for typically developing children was investigated in children with intellectual disabilities. Specifically, the feasibility of activities, measurements, and recruitment was investigated. Five children with intellectual disabilities and five typically developing children participated in 14 treadmill-based and free-living activities. In addition, resting energy expenditure was measured and a treadmill-based graded exercise test was used to assess cardiorespiratory fitness. Breath-by-breath respiratory gas exchange and accelerometry were continually measured during all activities. Feasibility was assessed using observations, activity completion rates, and respiratory data. Study 4: Thirty-six children with intellectual disabilities participated in a semi-structured school-based physical activity session to calibrate accelerometry for the estimation of physical activity intensity. Participants wore a hip-mounted ActiGraph wGT3X+ accelerometer, with direct observation (SOFIT) used as the criterion measure. Receiver operating characteristic curve analyses were conducted to determine the optimal accelerometer cut points for sedentary, moderate, and vigorous intensity physical activity. Study 5: To cross-validate the calibrated cut points and compare classification accuracy with existing cut points developed in typically developing children, a sub-sample of 14 children with intellectual disabilities who participated in the school-based sessions, as described in Study 4, were included in this study. To examine the validity, classification agreement was investigated between the criterion measure of SOFIT and each set of cut points using sensitivity, specificity, total agreement, and Cohen’s kappa scores. Results Study 1: Ten full text articles were included in this review. The percentage of review criteria met ranged from 12%−47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. A lack of measurement research, specifically the calibration/validation of accelerometers for children with intellectual disabilities, is limiting the ability of researchers to make appropriate and valid accelerometer use decisions. Study 2: The choice of cut points had significant and clinically meaningful effects on the estimation of physical activity intensity and sedentary behaviour. For the 71-minute session, estimations for time spent in each intensity between cut points ranged from: sedentary = 9.50 (± 4.97) to 31.90 (± 6.77) minutes; moderate = 8.10 (± 4.07) to 40.40 (± 5.74) minutes; vigorous = 0.00 (± .00) to 17.40 (± 6.54) minutes; and moderate to vigorous = 8.80 (± 4.64) to 46.50 (± 6.02) minutes. Study 3: All typically developing participants and one participant with intellectual disabilities completed the protocol. No participant met the maximal criteria for the graded exercise test or attained a steady state during the resting measurements. Limitations were identified with the usability of respiratory gas exchange equipment and the validity of measurements. The school-based recruitment strategy was not effective, with a participation rate of 6%. Therefore, a laboratory-based calibration protocol was not feasible for children with intellectual disabilities. Study 4: The optimal vertical axis cut points (cpm) were ≤ 507 (sedentary), 1008−2300 (moderate), and ≥ 2301 (vigorous). Sensitivity scores ranged from 81−88%, specificity 81−85%, and AUC .87−.94. The optimal vector magnitude cut points (cpm) were ≤ 1863 (sedentary), ≥ 2610 (moderate) and ≥ 4215 (vigorous). Sensitivity scores ranged from 80−86%, specificity 77−82%, and AUC .86−.92. Therefore, the vertical axis cut points provide a higher level of accuracy in comparison to the vector magnitude cut points. Study 5: Substantial to excellent classification agreement was found for the calibrated cut points. The calibrated sedentary cut point (ĸ =.66) provided comparable classification agreement with existing cut points (ĸ =.55−.67). However, the existing moderate and vigorous cut points demonstrated low sensitivity (0.33−33.33% and 1.33−53.00%, respectively) and disproportionately high specificity (75.44−.98.12% and 94.61−100.00%, respectively), indicating that cut points developed in typically developing children are too high to accurately classify physical activity intensity in children with intellectual disabilities. Conclusions The studies reported in this thesis are the first to calibrate and validate accelerometry for the estimation of physical activity intensity in children with intellectual disabilities. In comparison with typically developing children, children with intellectual disabilities require lower cut points for the classification of moderate and vigorous intensity activity. Therefore, generalising existing cut points to children with intellectual disabilities will underestimate physical activity and introduce systematic measurement error, which could be a contributing factor to the low levels of physical activity reported for children with intellectual disabilities in previous research.
Resumo:
South Asians migrating to the Western world have a 3 to 5-fold higher risk of developing type 2 diabetes and double the risk of cardiovascular disease (CVD) than the background population of White European descent, without exhibiting a proportional higher prevalence of conventional cardiometabolic risk factors. Notably, women of South Asian descent are more likely to be diagnosed with type 2 diabetes as they grow older compared with South Asian men and, in addition, they have lost the cardio-protective effects of being females. Despite South Asian women in Western countries being a high risk group for developing future type 2 diabetes and CVD, they have been largely overlooked. The aims of this thesis were to compare lifestyle factors, body composition and cardiometabolic risk factors in healthy South Asian and European women who reside in Scotland, to examine whether ethnicity modifies the associations between modifiable environmental factors and cardiometabolic risks and to assess whether vascular reactivity is altered by ethnicity or other conventional and novel CVD risks. I conducted a cross-sectional study and recruited 92 women of South Asian and 87 women of White European descent without diagnosed diabetes or CVD. Women on hormone replacement therapy or hormonal contraceptives were excluded too. Age and body mass index (BMI) did not differ between the two ethnic groups. Physical activity was assessed and with self-reported questionnaires and objectively with the use of accelerometers. Cardiorespiratory fitness was quantified with the predicted maximal oxygen uptake (VO2 max) during a submaximal test (Chester step test). Body composition was assessed with skinfolds measured at seven body sites, five body circumferences, measurement of abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) with the use of magnetic resonance imaging (MRI) and liver fat with the use MR spectroscopy. Dietary density was assessed with food frequency questionnaires. Vascular response was assessed by measuring the response to acetylcholine and sodium nitroprusside with the use of Laser Doppler Imaging with Iontophoresis (LDI-ION) and the response to shear stress with the use of Peripheral Arterial Tonometry (EndoPAT). The South Asian women exhibited a metabolic profile consistent with the insulin resistant phenotype, characterised by greater levels of fasting insulin, lower levels of high density lipoprotein (HDL) and higher levels of triglycerides (TG) compared with their European counterparts. In addition, the South Asians had greater levels of glycated haemoglobin (HbA1c) for any given level of fasting glucose. The South Asian women engaged less time weekly with moderate to vigorous physical activity (MVPA) and had lower levels of cardiorespiratory fitness for any given level of physical activity than the women of White descent. In addition, they accumulated more fat centrally for any given BMI. Notably, the South Asians had equivalent SAT with the European women but greater VAT and hepatic fat for any given BMI. Dietary density did not differ among the groups. Increasing central adiposity had the largest effect on insulin resistance in both ethic groups compared with physical inactivity or decreased cardiorespiratory fitness. Interestingly, ethnicity modified the association between central adiposity and insulin resistance index with a similar increase in central adiposity having a substantially larger effect on insulin resistance index in the South Asian women than in the Europeans. I subsequently examined whether ethnic specific thresholds are required for lifestyle modifications and demonstrated that South Asian women need to engage with MVPA for around 195 min.week-1 in order to equate their cardiometabolic risk with that of the Europeans exercising 150 min.week-1. In addition, lower thresholds of abdominal adiposity and BMI should apply for the South Asians compared with the conventional thresholds. Although the South Asians displayed an adverse metabolic profile, vascular reactivity measured with both methods did not differ among the two groups. An additional finding was that menopausal women with hot flushing of both ethnic groups showed a paradoxical vascular profile with enhanced skin perfusion (measured with LDI-ION) but decreased reactive hyperaemia index (measured with EndoPAT) compared with asymptomatic menopausal women. The latter association was independent of conventional CVD risk factors. To conclude, South Asian women without overt disease who live in Scotland display an adverse metabolic profile with steeper associations between lifestyle risk factors and adverse cardiometabolic outcomes compared with their White counterparts. Further work in exploring ethnic specific thresholds in lifestyle interventions or in disease diagnosis is warranted.