986 resultados para Ab initio electronic structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports a theoretical study based on experimental results for barium zirconate, BaZrO3 (BZ) thin films, using periodic mechanic quantum calculations to analyze the symmetry change in a structural order-disorder simulation. Four periodic models were simulated using CRYSTAL98 code to represent the ordered and disordered BZ structures. The results were analyzed in terms of the energy level diagrams and atomic orbital distributions to explain and understand the BZ photoluminescence properties (PL) at room temperature for the disordered structure based on structural deformation and symmetry changes. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 111: 694-701, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Generator Coordinate Hartree-Fock (GCHF) method is employed to generate uncontracted 15s and 18s11p gaussian basis sets for the H, C and O atoms, respectively. These basis sets are then contracted to 3s and 4s H atom and 6s5p, for C and O atoms by a standard procedure. For quality evaluation of contracted basis sets in molecular calculations, we have accomplished calculations of total and orbital energies in the Hartree-Fock-Roothaaii (HFR) approach for CH, C(2) and CO molecules. The results obtained with the uncontracted basis sets are compared with values obtained with the standard D95, 6-311G basis sets and with values reported in the literature. The 4s and 6s5p basis sets are enriched with polarization and diffuse functions for atoms of the parent neutral systems and of the enolates anions (cycloheptanone enolate, 2,5-dimethyleyelopentanone enolate, 4-heptanone enolate, and di-isopropyl ketone enolate) from the literature, in order to assess their performance in ab initio molecular calculations, and applied for calculations of electron affinities of the enolates. The calculations were performed at the DFT (BLYP and B3LYP) and HF levels and compared with the corresponding experimental values and with those obtained by using other 6-3 1 + +G((*)) and 6-311 + +G((*)) basis sets from literature. For the enolates studied, the differences between the electron affinities obtained with GCHF basis sets, at the B3LYP level, and the experimental values are -0.001, -0,014, -0.001, and -0.001 eV. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic properties of a Ti3Al intermetallic compound were studied using full potential (FP LAPW ) with the APW+lo method. The FP-LAPW is among the most accurate band structure calculations currently available and is based on the density functional theory with general gradient approximation for the exchange and correlation potential. This method provides the structural properties of the ground state as bulk modulus, equilibrium lattice parameter, and equilibrium minimum energy, and the elastic properties as shear modulus, young modulus, Zener coefficient (anisotropy), and Poisson coefficient. The calculated elastic properties are coherent with the elastic properties of the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid solution based on Nb5Si3 (Cr5B3 structure type, D8(l), tl32, 14/mcm, No140, a=6.5767 angstrom, c=11.8967 angstrom) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods.rnrnrnIn the case of the hydrogen storage system lithium amide/imide (LiNH_2/Li_2NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state 1H-NMR chemical shifts was observed. Specifically, the structure of Li_2NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus.rnrnOn the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding network in the material. The results indicate that these water molecules are essential for the effectiveness of proton conduction. A water-mediated Grotthuss mechanism is identified as the main contributor to proton conduction, which agrees with the experimentally observed decay on conductivity for the same material in the absence of water molecules.rnrnThe gain in understanding the microscopic processes and structures present in this materials can help the development of new materials with improved properties, thus contributing to the solution of problems in the implementation of fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ab initio quantum calculation of the optical properties of formamide in vapor phase and in water solution. We employ time dependent density functional theory for the isolated molecule and many-body perturbation theory methods for the system in solution. An average over several molecular dynamics snapshots is performed to take into account the disorder of the liquid. We find that the excited stateproperties of the gas-phase formamide are strongly modified by the presence of the water solvent: the geometry of the molecule is distorted and the electronic and optical properties are severely modified. The important interaction among the formamide and the water molecules forces us to use fully quantum methods for the calculation of the excited stateproperties of this system. The excitonic wave function is localized both on the solute and on part of the solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After decades of research on molecular excitons, only few molecular dimers are available on which exciton and vibronic coupling theories can be rigorously tested. In centrosymmetric H-bonded dimers consisting of identical (hetero)aromatic chromophores, the monomer electronic transition dipole moment vectors subtract or add, yielding S0 → S1 and S0 → S2 transitions that are symmetry-forbidden or -allowed, respectively. Symmetry breaking by 12C/13C or H/D isotopic substitution renders the forbidden transition weakly allowed. The excitonic coupling (Davydov splitting) can then be measured between the S0 → S1 and S0 → S2 vibrationless bands. We discuss the mass-specific excitonic spectra of five H-bonded dimers that are supersonically cooled to a few K and investigated using two-color resonant two-photon ionization spectroscopy. The excitonic splittings Δcalc predicted by ab initio methods are 5–25 times larger than the experimental excitonic splittings Δexp. The purely electronic ab initio splittings need to be reduced (“quenched”), reflecting the coupling of the electronic transition to the optically active vibrations of the monomers. The so-called quenching factors Γ < 1 can be determined from experiment (Γexp) and/or calculation (Γcalc). The vibronically quenched splittings Γ·Δcalc are found to nicely reproduce the experimental exciton splittings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen isotopes play a critical role both in inertial and magnetic confinement Nuclear Fusion. Since the preferent fuel needed for this technology is a mixture of deuterium and tritium. The study of these isotopes particularly at very low temperatures carries a technological interest in other applications. The present line promotes a deep study on the structural configuration that hydrogen and deuterium adopt at cryogenic temperatures and at high pressures. Typical conditions occurring in present Inertial Fusion target designs. Our approach is aims to determine the crystal structure characteristics, phase transitions and other parameters strongly correlated to variations of temperature and pressure. With this results is possible calculated the elastic constant and sound velocity for hydrogen and deuterium in molecular solid phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin disulfide SnS2 was recently proposed as a high efficiency solar cell precursor [1]. The aim of this work is a deep study of the structural disposition of the most important polytipes of this layered material, not only describing the electronic correlation but also the interatomic Van der Waals interactions that is present between the layers. The two recent implementations to take Van der Waals interactions into account in the VASP code are the self-consistent Dion et al. [2] functional optimized for solids by Michaelides et al [3] and the Grimme [4] dispersion correction that is applied after each autoconsistent PBE electronic calculation. In this work these two methods are compared with DFT PBE functional. The results we will presented at this Conference, demonstrates the enhancement of the geometric parameters by the use of the Van der Waals interactions in agreement with the experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of benzene at various wavelengths upon absorption of one or two UV photons followed by internal conversion into the ground electronic state. Reaction pathways leading to various decomposition products have been mapped out at the G2M level and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for C6H5+H, C6H4+H-2, C4H4+C2H2, C4H2+C2H4, C3H3+C3H3, C5H3+CH3, and C4H3+C2H3 have been calculated subsequently using both numerical integration of kinetic master equations and the steady-state approach. The results show that upon absorption of a 248 nm photon dissociation is too slow to be observable in molecular beam experiments. In photodissociation at 193 nm, the dominant dissociation channel is H atom elimination (99.6%) and the minor reaction channel is H-2 elimination, with the branching ratio of only 0.4%. The calculated lifetime of benzene at 193 nm is about 11 mus, in excellent agreement with the experimental value of 10 mus. At 157 nm, the H loss remains the dominant channel but its branching ratio decreases to 97.5%, while that for H-2 elimination increases to 2.1%. The other channels leading to C3H3+C3H3, C5H3+CH3, C4H4+C2H2, and C4H3+C2H3 play insignificant role but might be observed. For photodissociation upon absorption of two UV photons occurring through the neutral hot benzene mechanism excluding dissociative ionization, we predict that the C6H5+H channel should be less dominant, while the contribution of C6H4+H-2 and the C3H3+C3H3, CH3+C5H3, and C4H3+C2H3 radical channels should significantly increase. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.<.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.