960 resultados para 4D imaging
Resumo:
Understanding how the brain matures in healthy individuals is critical for evaluating deviations from normal development in psychiatric and neurodevelopmental disorders. The brain's anatomical networks are profoundly re-modeled between childhood and adulthood, and diffusion tractography offers unprecedented power to reconstruct these networks and neural pathways in vivo. Here we tracked changes in structural connectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19; 31 female/24 male 12 year olds, mean age=12.3, SD=0.18; and 25 female/22 male 16 year olds, mean age=16.2, SD=0.37). All participants were scanned with high angular resolution diffusion imaging (HARDI) at 4 T. After we performed whole brain tractography, 70 cortical gyral-based regions of interest were extracted from each participant's co-registered anatomical scans. The proportion of fiber connections between all pairs of cortical regions, or nodes, was found to create symmetric fiber density matrices, reflecting the structural brain network. From those 70 × 70 matrices we computed graph theory metrics characterizing structural connectivity. Several key global and nodal metrics changed across development, showing increased network integration, with some connections pruned and others strengthened. The increases and decreases in fiber density, however, were not distributed proportionally across the brain. The frontal cortex had a disproportionate number of decreases in fiber density while the temporal cortex had a disproportionate number of increases in fiber density. This large-scale analysis of the developing structural connectome offers a foundation to develop statistical criteria for aberrant brain connectivity as the human brain matures.
Resumo:
The insula, hidden deep within the Sylvian fissures, has proven difficult to study from a connectivity perspective. Most of our current information on the anatomical connectivity of the insula comes from studies of nonhuman primates and post mortem human dissections. To date, only two neuroimaging studies have successfully examined the connectivity of the insula. Here we examine how the connectivity of the insula develops between ages 12 and 30, in 307 young adolescent and adult subjects scanned with 4-Tesla high angular resolution diffusion imaging (HARDI). The density of fiber connections between the insula and the frontal and parietal cortex decreased with age, but the connection density between the insula and the temporal cortex generally increased with age. This trajectory is in line with well-known patterns of cortical development in these regions. In addition, males and females showed different developmental trajectories for the connection between the left insula and the left precentral gyrus. The insula plays many different roles, some of them affected in neuropsychiatric disorders; this information on the insula's connectivity may help efforts to elucidate mechanisms of brain disorders in which it is implicated.
Resumo:
Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.
Resumo:
Meta-analyses estimate a statistical effect size for a test or an analysis by combining results from multiple studies without necessarily having access to each individual study's raw data. Multi-site meta-analysis is crucial for imaging genetics, as single sites rarely have a sample size large enough to pick up effects of single genetic variants associated with brain measures. However, if raw data can be shared, combining data in a "mega-analysis" is thought to improve power and precision in estimating global effects. As part of an ENIGMA-DTI investigation, we use fractional anisotropy (FA) maps from 5 studies (total N=2, 203 subjects, aged 9-85) to estimate heritability. We combine the studies through meta-and mega-analyses as well as a mixture of the two - combining some cohorts with mega-analysis and meta-analyzing the results with those of the remaining sites. A combination of mega-and meta-approaches may boost power compared to meta-analysis alone.
Resumo:
Large multi-site image-analysis studies have successfully discovered genetic variants that affect brain structure in tens of thousands of subjects scanned worldwide. Candidate genes have also associated with brain integrity, measured using fractional anisotropy in diffusion tensor images (DTI). To evaluate the heritability and robustness of DTI measures as a target for genetic analysis, we compared 417 twins and siblings scanned on the same day on the same high field scanner (4-Tesla) with two protocols: (1) 94-directions; 2mm-thick slices, (2) 27-directions; 5mm-thickness. Using mean FA in white matter ROIs and FA skeletons derived using FSL, we (1) examined differences in voxelwise means, variances, and correlations among the measures; and (2) assessed heritability with structural equation models, using the classical twin design. FA measures from the genu of the corpus callosum were highly heritable, regardless of protocol. Genome-wide analysis of the genu mean FA revealed differences across protocols in the top associations.
Resumo:
This work describes the development of a model of cerebral atrophic changes associated with the progression of Alzheimer's disease (AD). Linear registration, region-of-interest analysis, and voxel-based morphometry methods have all been employed to elucidate the changes observed at discrete intervals during a disease process. In addition to describing the nature of the changes, modeling disease-related changes via deformations can also provide information on temporal characteristics. In order to continuously model changes associated with AD, deformation maps from 21 patients were averaged across a novel z-score disease progression dimension based on Mini Mental State Examination (MMSE) scores. The resulting deformation maps are presented via three metrics: local volume loss (atrophy), volume (CSF) increase, and translation (interpreted as representing collapse of cortical structures). Inspection of the maps revealed significant perturbations in the deformation fields corresponding to the entorhinal cortex (EC) and hippocampus, orbitofrontal and parietal cortex, and regions surrounding the sulci and ventricular spaces, with earlier changes predominantly lateralized to the left hemisphere. These changes are consistent with results from post-mortem studies of AD.
Resumo:
Pharmacological MRI (phMRI) techniques can be used to monitor the neurophysiological effects of central nervous system (CNS) active drugs. In this study, we investigated whether dynamic susceptibility contrast (DSC) perfusion imaging employing the use of superparamagnetic iron oxide nanoparticles (Resovist) could be used to measure hemodynamic response to d-amphetamine challenge in human subjects at both 1.5 and 4 T. Significant changes in cerebral blood flow (CBF) were found in focal regions associated with the nigrostriatal circuit and mesolimbic and mesocortical dopaminergic pathways. More significant CBF responses were found at higher field strength, mainly within striatal structures. The results from this study indicate that DSC perfusion imaging using Resovist can be used to assess the efficacy of CNS-active drugs and may play a role in the development of novel psychiatric therapies at the preclinical level. © 2005 Wiley-Liss, Inc.
Resumo:
Background: Magnetic resonance diffusion tensor imaging (DTI) shows promise in the early detection of microstructural pathophysiological changes in the brain. Objectives: To measure microstructural differences in the brains of participants with amnestic mild cognitive impairment (MCI) compared with an age-matched control group using an optimised DTI technique with fully automated image analysis tools and to investigate the correlation between diffusivity measurements and neuropsychological performance scores across groups. Methods: 34 participants (17 participants with MCI, 17 healthy elderly adults) underwent magnetic resonance imaging (MRI)-based DTI. To control for the effects of anatomical variation, diffusion images of all participants were registered to standard anatomical space. Significant statistical differences in diffusivity measurements between the two groups were determined on a pixel-by-pixel basis using gaussian random field theory. Results: Significantly raised mean diffusivity measurements (p<0.001) were observed in the left and right entorhinal cortices (BA28), posterior occipital-parietal cortex (BA18 and BA19), right parietal supramarginal gyrus (BA40) and right frontal precentral gyri (BA4 and BA6) in participants with MCI. With respect to fractional anisotropy, participants with MCI had significantly reduced measurements (p<0.001) in the limbic parahippocampal subgyral white matter, right thalamus and left posterior cingulate. Pearson's correlation coefficients calculated across all participants showed significant correlations between neuropsychological assessment scores and regional measurements of mean diffusivity and fractional anisotropy. Conclusions: DTI-based diffusivity measures may offer a sensitive method of detecting subtle microstructural brain changes associated with preclinical Alzheimer's disease.
Resumo:
There is a major effort in medical imaging to develop algorithms to extract information from DTI and HARDI, which provide detailed information on brain integrity and connectivity. As the images have recently advanced to provide extraordinarily high angular resolution and spatial detail, including an entire manifold of information at each point in the 3D images, there has been no readily available means to view the results. This impedes developments in HARDI research, which need some method to check the plausibility and validity of image processing operations on HARDI data or to appreciate data features or invariants that might serve as a basis for new directions in image segmentation, registration, and statistics. We present a set of tools to provide interactive display of HARDI data, including both a local rendering application and an off-screen renderer that works with a web-based viewer. Visualizations are presented after registration and averaging of HARDI data from 90 human subjects, revealing important details for which there would be no direct way to appreciate using conventional display of scalar images.
Resumo:
Heritability of brain anatomical connectivity has been studied with diffusion-weighted imaging (DWI) mainly by modeling each voxel's diffusion pattern as a tensor (e.g., to compute fractional anisotropy), but this method cannot accurately represent the many crossing connections present in the brain. We hypothesized that different brain networks (i.e., their component fibers) might have different heritability and we investigated brain connectivity using High Angular Resolution Diffusion Imaging (HARDI) in a cohort of twins comprising 328 subjects that included 70 pairs of monozygotic and 91 pairs of dizygotic twins. Water diffusion was modeled in each voxel with a Fiber Orientation Distribution (FOD) function to study heritability for multiple fiber orientations in each voxel. Precision was estimated in a test-retest experiment on a sub-cohort of 39 subjects. This was taken into account when computing heritability of FOD peaks using an ACE model on the monozygotic and dizygotic twins. Our results confirmed the overall heritability of the major white matter tracts but also identified differences in heritability between connectivity networks. Inter-hemispheric connections tended to be more heritable than intra-hemispheric and cortico-spinal connections. The highly heritable tracts were found to connect particular cortical regions, such as medial frontal cortices, postcentral, paracentral gyri, and the right hippocampus.
Resumo:
A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6 ≤ N ≤ 94) that optimized a spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.
Resumo:
Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.
Resumo:
Purpose Traditional construction planning relies upon the critical path method (CPM) and bar charts. Both of these methods suffer from visualization and timing issues that could be addressed by 4D technology specifically geared to meet the needs of the construction industry. This paper proposed a new construction planning approach based on simulation by using a game engine. Design/methodology/approach A 4D automatic simulation tool was developed and a case study was carried out. The proposed tool was used to simulate and optimize the plans for the installation of a temporary platform for piling in a civil construction project in Hong Kong. The tool simulated the result of the construction process with three variables: 1) equipment, 2) site layout and 3) schedule. Through this, the construction team was able to repeatedly simulate a range of options. Findings The results indicate that the proposed approach can provide a user-friendly 4D simulation platform for the construction industry. The simulation can also identify the solution being sought by the construction team. The paper also identifies directions for further development of the 4D technology as an aid in construction planning and decision-making. Research limitations/implications The tests on the tool are limited to a single case study and further research is needed to test the use of game engines for construction planning in different construction projects to verify its effectiveness. Future research could also explore the use of alternative game engines and compare their performance and results. Originality/value The authors proposed the use of game engine to simulate the construction process based on resources, working space and construction schedule. The developed tool can be used by end-users without simulation experience.
Resumo:
Background Although there are many structural neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) in children, there are inconsistencies across studies and no consensus regarding which brain regions show the most robust area or volumetric reductions relative to control subjects. Our goal was to statistically analyze structural imaging data via a meta-analysis to help resolve these issues. Methods We searched the MEDLINE and PsycINFO databases through January 2005. Studies must have been written in English, used magnetic resonance imaging, and presented the means and standard deviations of regions assessed. Data were extracted by one of the authors and verified independently by another author. Results Analyses were performed using STATA with metan, metabias, and metainf programs. A meta-analysis including all regions across all studies indicated global reductions for ADHD subjects compared with control subjects, standardized mean difference equal to .408, p less than .001. Regions most frequently assessed and showing the largest differences included cerebellar regions, the splenium of the corpus callosum, total and right cerebral volume, and right caudate. Several frontal regions assessed in only two studies also showed large significant differences. Conclusions This meta-analysis provides a quantitative analysis of neuroanatomical abnormalities in ADHD and information that can be used to guide future studies.