769 resultados para 380305 Knowledge Representation and Machine Learning
Resumo:
Currently the world around us "reboots" every minute and “staying at the forefront” seems to be a very arduous task. The continuous and “speeded” progress of society requires, from all the actors, a dynamic and efficient attitude both in terms progress monitoring and moving adaptation. With regard to education, no matter how updated we are in relation to the contents, the didactic strategies and technological resources, we are inevitably compelled to adapt to new paradigms and rethink the traditional teaching methods. It is in this context that the contribution of e-learning platforms arises. Here teachers and students have at their disposal new ways to enhance the teaching and learning process, and these platforms are seen, at the present time, as significant virtual teaching and learning supporting environments. This paper presents a Project and attempts to illustrate the potential that new technologies present as a “backing” tool in different stages of teaching and learning at different levels and areas of knowledge, particularly in Mathematics. We intend to promote a constructive discussion moment, exposing our actual perception - that the use of the Learning Management System Moodle, by Higher Education teachers, as supplementary teaching-learning environment for virtual classroom sessions can contribute for greater efficiency and effectiveness of teaching practice and to improve student achievement. Regarding the Learning analytics experience we will present a few results obtained with some assessment Learning Analytics tools, where we profoundly felt that the assessment of students’ performance in online learning environments is a challenging and demanding task.
Resumo:
Dissertação para obtenção do Grau de Doutor em Estatística e Gestão do Risco
Resumo:
ABSTRACT - Objectives: We attempted to show how the implementation of the key elements of the World Health Organization Patient Safety Curriculum Guide Multi-professional Edition in an undergraduate curriculum affected the knowledge, skills, and attitudes towards patient safety in a graduate entry Portuguese Medical School. Methods: After receiving formal recognition by the WHO as a Complementary Test Site and approval of the organizational ethics committee , the validated pre-course questionnaires measuring the knowledge, skills, and attitudes to patient safety were administered to the 2nd and3rd year students pursuing a four-year course (N = 46). The key modules of the curriculum were implemented over the academic year by employing a variety of learning strategies including expert lecturers, small group problem-based teaching sessions, and Simulation Laboratory sessions. The identical questionnaires were then administered and the impact was measured. The Curriculum Guide was evaluated as a health education tool in this context. Results: A significant number of the respondents, 47 % (n = 22), reported having received some form of prior patient safety training. The effect on Patient Safety Knowledge was assessed by using the percentage of correct pre- and post-course answers to construct 2 × 2 contingency tables and by applying Fishers’ test (two-tailed). No significant differences were detected (p < 0.05). To assess the effect of the intervention on Patient Safety skills and attitudes, the mean and standard deviation were calculated for the pre and post-course responses, and independent samples were subjected to Mann-Whitney’s test. The attitudinal survey indicated a very high baseline incidence of desirable attitudes and skills toward patient safety. Significant changes were detected (p < 0.05) regarding what should happen if an error is made (p = 0.016), the role of healthcare organizations in error reporting (p = 0.006), and the extent of medical error (p = 0.005). Conclusions: The implementation of selected modules of the WHO Patient Safety Curriculum was associated with a number of positive changes regarding patient safety skills and attitudes, with a baseline incidence of highly desirable patient safety attitudes, but no measureable change on the patient safety knowledge, at the University of Algarve Medical School. The significance of these results is discussed along with implications and suggestions for future research.
Resumo:
Organisations continuously innovate, create, and are competitive if they improve their performance through continuous intellectual capital development, a key resource for value creation and organisational performance driver. Apart from sustaining competitive advantage, intellectual capital is increasingly important due to its ability to increase shareholder value, especially in public organisations. Employee learning, talent development, and knowledge creation allow the organisation to generate innovative ideas due to the quickness of knowledge obsolescence. The organisation's dynamic capabilities create and re-ignite organisational competencies for business sustainability being co-ordinated by well-structured organisational strategic routines ensuring continuous value creation streams into the business. This chapter focuses on the relationship between notions of knowledge sharing and trust in organisations. Lack of trust can impact negatively organisational knowledge sharing, dependent on trust, openness, and communication. The research sample included graduates and postgraduate students from two universities in Portugal. The findings revealed different perceptions according to the age group.
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.
Resumo:
A study of how the machine learning technique, known as gentleboost, could improve different digital watermarking methods such as LSB, DWT, DCT2 and Histogram shifting.
Resumo:
Avalanche forecasting is a complex process involving the assimilation of multiple data sources to make predictions over varying spatial and temporal resolutions. Numerically assisted forecasting often uses nearest neighbour methods (NN), which are known to have limitations when dealing with high dimensional data. We apply Support Vector Machines to a dataset from Lochaber, Scotland to assess their applicability in avalanche forecasting. Support Vector Machines (SVMs) belong to a family of theoretically based techniques from machine learning and are designed to deal with high dimensional data. Initial experiments showed that SVMs gave results which were comparable with NN for categorical and probabilistic forecasts. Experiments utilising the ability of SVMs to deal with high dimensionality in producing a spatial forecast show promise, but require further work.
Resumo:
Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.
Resumo:
We tested and compared performances of Roach formula, Partin tables and of three Machine Learning (ML) based algorithms based on decision trees in identifying N+ prostate cancer (PC). 1,555 cN0 and 50 cN+ PC were analyzed. Results were also verified on an independent population of 204 operated cN0 patients, with a known pN status (187 pN0, 17 pN1 patients). ML performed better, also when tested on the surgical population, with accuracy, specificity, and sensitivity ranging between 48-86%, 35-91%, and 17-79%, respectively. ML potentially allows better prediction of the nodal status of PC, potentially allowing a better tailoring of pelvic irradiation.
Resumo:
Peer-reviewed
Resumo:
We develop a growth model where knowledge is embodied in individuals and diffused across sectors through labor mobility. The existence of labor mobility costs constrains mobility and, thus, generates labor misallocation. Different levels of labor misallocation imply different levels of exploitation of available knowledge and, therefore, different total factor productivity across countries. We derive a positive relationship between growth and labor mobility, which is consistent with the empirical evidence, by assuming aggregate constant returns to capital. We also analyze the short and long run effects of labor mobility costs in the case of decreasing returns to capital. It turns out that changes in mobility costs have larger economic effects when different types of worker have small rather than large complementarities. Finally, we show that different labor income taxes or labor market tightness imply different rates of labor mobility and, therefore, can explain differences in Gross Domestic Product across countries.
Resumo:
The central theme of this thesis is the emancipation and further development of learning activity in higher education in the context of the ongoing digital transformation of our societies. It was developed in response to the highly problematic mainstream approach to digital re-instrumentation of teaching and studying practises in contemporary higher education. The mainstream approach is largely based on centralisation, standardisation, commoditisation, and commercialisation, while re-producing the general patterns of control, responsibility, and dependence that are characteristic for activity systems of schooling. Whereas much of educational research and development focuses on the optimisation and fine-tuning of schooling, the overall inquiry that is underlying this thesis has been carried out from an explicitly critical position and within a framework of action science. It thus conceptualises learning activity in higher education not only as an object of inquiry but also as an object to engage with and to intervene into from a perspective of intentional change. The knowledge-constituting interest of this type of inquiry can be tentatively described as a combination of heuristic-instrumental (guidelines for contextualised action and intervention), practical-phronetic (deliberation of value-rational aspects of means and ends), and developmental-emancipatory (deliberation of issues of power, self-determination, and growth) aspects. Its goal is the production of orientation knowledge for educational practise. The thesis provides an analysis, argumentation, and normative claim on why the development of learning activity should be turned into an object of individual|collective inquiry and intentional change in higher education, and why the current state of affairs in higher education actually impedes such a development. It argues for a decisive shift of attention to the intentional emancipation and further development of learning activity as an important cultural instrument for human (self-)production within the digital transformation. The thesis also attempts an in-depth exploration of what type of methodological rationale can actually be applied to an object of inquiry (developing learning activity) that is at the same time conceptualised as an object of intentional change within the ongoing digital transformation. The result of this retrospective reflection is the formulation of “optimally incomplete” guidelines for educational R&D practise that shares the practicalphronetic (value related) and developmental-emancipatory (power related) orientations that had been driving the overall inquiry. In addition, the thesis formulates the instrumental-heuristic knowledge claim that the conceptual instruments that were adapted and validated in the context of a series of intervention studies provide means to effectively intervene into existing practise in higher education to support the necessary development of (increasingly emancipated) networked learning activity. It suggests that digital networked instruments (tools and services) generally should be considered and treated as transient elements within critical systemic intervention research in higher education. It further argues for the predominant use of loosely-coupled, digital networked instruments that allow for individual|collective ownership, control, (co-)production, and re-use in other contexts and for other purposes. Since the range of digital instrumentation options is continuously expanding and currently shows no signs of an imminent slow-down or consolidation, individual and collective exploration and experimentation of this realm needs to be systematically incorporated into higher education practise.