938 resultados para water management and policy
Resumo:
Australian governments face the twin challenges of dealing with extreme weather-related disasters (such as floods and bushfires) and adapting to the impacts of climate change. These challenges are connected, so any response would benefit from a more integrated approach across and between the different levels of government.This report summarises the findings of an NCCARF-funded project that addresses this problem. The project undertook a three-way comparative case study of the 2009 Victorian bushfires, the 2011 Perth Hills bushfires, and the 2011 Brisbane floods. It collected data from the official inquiry reports into each of these events, and conducted new interviews and workshops with key stakeholders. The findings of this project included recommendations that range from the conceptual to the practical. First, it was argued that a reconceptualization of terms such as ‘community’ and ‘resilience’ was necessary to allow for more tailored responses to varying circumstances. Second, it was suggested that the high level of uncertainty inherent in disaster risk management and climate change adaptation requires a more iterative approach to policymaking and planning. Third, some specific institutional reforms were proposed that included: 1) a new funding mechanism that would encourage collaboration between and across different levels of government, as well as promoting partnerships with business and the community; 2) improving community engagement through new resilience grants run by local councils; 3) embedding climate change researchers within disaster risk management agencies to promote institutional learning, and; 4) creating an inter-agency network that encourages collaboration between organisations.
Resumo:
Emergency management and climate change adaptation will increasingly challenge all levels of government because of three main factors. First, Australia is extremely vulnerable to the impacts of climate change, particularly through the increasing frequency and/or intensity of disasters such as floods and bushfires. Second, the system of government that divides powers by function and level can often act as a barrier to a well-integrated response. Third, policymaking processes struggle to cope with such complex inter-jurisdictional issues. This paper discusses these factors and explores the nature of the challenge for Australian governments. Investigations into the 2009 Victorian bushfires, the 2011 Perth Hills bushfires, and the 2011 Brisbane floods offer an indication of the challenges ahead and it is argued that there is a need to: improve community engagement and communication; refocus attention on resilience; improve interagency communication and collaboration; and, develop institutional arrangements that support continual improvement and policy learning. These findings offer an opportunity for improving responses as well as a starting point for integrating disaster risk management and climate change adaptation policies. The paper is based on the preliminary findings of an NCCARF funded research project: The Right Tool for the Job – Achieving climate change adaptation outcomes through improved disaster management policies, planning and risk management strategies involving Griffith University and RMIT.
Resumo:
This article discusses the situation of income support claimants in Australia, constructed as faulty citizens and flawed welfare subjects. Many are on the receiving end of complex, multi-layered forms of surveillance aimed at securing socially responsible and compliant behaviours. In Australia, as in other Western countries, neoliberal economic regimes with their harsh and often repressive treatment of welfare recipients operate in tandem with a burgeoning and costly arsenal of CCTV and other surveillance and governance assemblages. Through a program of ‘Income Management’, initially targeting (mainly) Indigenous welfare recipients in Australia’s Northern Territory, the BasicsCard (administered by Centrelink, on behalf of the Australian Federal Government’s Department of Human Services) is one example of this welfare surveillance. The scheme operates by ‘quarantining’ a percentage of a claimant’s welfare entitlements to be spent by way of the BasicsCard on ‘approved’ items only. The BasicsCard scheme raises significant questions about whether it is possible to encourage people to take responsibility for themselves if they no longer have real control over the most important aspects of their lives. Some Indigenous communities have resisted the BasicsCard, criticising it because the imposition of income management leads to a loss of trust, dignity, and individual agency. Further, income management of individuals by the welfare state contradicts the purported aim that they become less ‘welfare dependent’ and more ‘self-reliant’. In highlighting issues around compulsory income management this paper makes a contribution to the largely under discussed area of income management and welfare surveillance, with its propensity for function creep, garnering large volumes of data on BasicsCard user’s approved (and declined) purchasing decisions, complete with dates, amounts, times and locations.
Resumo:
Major disasters, such as bushfires or floods, place significant stress on scarce public resources. Climate change is likely to exacerbate this stress. An integrated approach to disaster risk management (DRM) and climate change adaptation (CCA) could reduce the stress by encouraging the more efficient use of pooled resources and expertise. A comparative analysis of three extreme climate-related events that occurred in Australia between 2009 and 2011 indicated that a strategy to improve interagency communication and collaboration would be a key factor in this type of policy/planning integration. These findings are in accord with the concepts of Joined-up Government and Network Governance. Five key reforms are proposed: developing a shared policy vision; adopting multi-level planning; integrating legislation; networking organisations; and establishing cooperative funding. These reforms are examined with reference to the related research literature in order to identify potential problems associated with their implementation. The findings are relevant for public policy generally but are particularly useful for CCA and DRM.
Resumo:
This report was produced by the Decoupling Working Group of the International Resource Panel. It explores technological possibilities and opportunities for both developing and developed countries to accelerate decoupling and reap the environmental and economic benefits of increased resource productivity. It also examines several policy options that have proved to be successful in helping different countries to improve resource productivity in various sectors of their economy, avoiding negative impacts on the environment. It does not seem possible for a global economy based on the current unsustainable patterns of resource use to continue into the future. The economic consequences of these patterns are already apparent in three areas: increases in resource prices, increased price volatility and disruption of environmental systems. The environment impacts of resource use are also leading to potentially irreversible changes to the world’s ecosystems, often with direct effects on people and the economy – for example through damage to health, water shortages, loss of fish stocks or increased storm damage. But there are alternatives to these scary patterns. Many decoupling technologies and techniques that deliver resource productivity increases as high as 5 to 10-fold are already available, allowing countries to pursue their development strategies while significantly reducing their resource footprint and negative impacts on the environment. This report shows that much of the policy design “know-how” needed to achieve decoupling is present in terms of legislation, incentive systems, and institutional reform. Many countries have tried these out with tangible results, encouraging others to study and where appropriate replicate and scale up such practices and successes.
Resumo:
Water management is vital for mine sites both for production and sustainability related issues. Effective water management is a complex task since the role of water on mine sites is multifaceted. Computers models are tools that represent mine site water interaction and can be used by mine sites to inform or evaluate their water management strategies. There exist several types of models that can be used to represent mine site water interactions. This paper presents three such models: an operational model, an aggregated systems model and a generic systems model. For each model the paper provides a description and example followed by an analysis of its advantages and disadvantages. The paper hypotheses that since no model is optimal for all situations, each model should be applied in situations where it is most appropriate based upon the scale of water interactions being investigated, either unit (operation), inter-site (aggregated systems) or intra-site (generic systems).
Resumo:
The 2009 H!Nl 'swine flu' pandemic was the first influenza pandemic of the twenty-first centmy. Unlike the first influenza pandemic of the twentieth century, the so-called 'Spanish flu' which killed millions of people worldwide, the 2009 pandemic was relatively mild. While the mildness of the 2009 pandemic meant that the 'Yorld was spared from the impact of a high-mortality event that would cause widespread social and economic disruption, the 2009 pandemic did provide an opportunity to road-test pandemic readiness. In other work we have assessed Australia's pandemic plans and emergency management legislation, finding that both provide flexible and adaptive forms of regulation that are capable of adapting to the scale and severity of a pandemic or other public health emergency. 1 In this chapter we consider whether pandemic planning adequately addresses the needs of vulnerable individuals and groups, both within countries and between them. Central to this is the question of whether vulnerability is itself a useful concept for both law and policy, and if so, the implications of expressly incorporating the concept of vulnerability into pandemic planning.
Resumo:
The human right to water has recently been recognised by both the United Nations General Assembly and the Human Rights Council. As the mining industry interacts with water on multiple levels, it is important that these interactions respect the human right to water. Currently, a disconnect exists between mine site water management practices and the recognition of water from a human rights perspective. The Minerals Council of Australia (MCA) Water Accounting Framework (WAF) has previously been used to strengthen the connection between water management and human rights. This article extends this connection through the use of a Social Water Assessment Protocol (SWAP). The SWAP is scoping tool consisting of a set of questions classified into taxonomic themes under leading topics with suggested sources of data that enable mine sites to better understand the local water context in which they operate. Three of the themes contained in the SWAP – gender, Indigenous peoples and health – are discussed to demonstrate how the protocol may be useful in assisting mining companies to consider their impacts on the human right to water.
Resumo:
The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.
Resumo:
The fate and transport of three herbicides commonly used in rice production in Japan were compared using two water management practices. The herbicides were simetryn, thiobencarb and mefenacet. The first management practice was an intermittent irrigation scheme using an automatic irrigation system (AI) with a high drainage gate and the second one was a continuous irrigation and overflow drainage scheme (CI) in experimental paddy fields. Dissipation of the herbicides appeared to follow first order kinetics with the half-lives (DT50) of 1.6-3.4 days and the DT90 (90% dissipation) of 7.4-9.8 days. The AI scheme had little drainage even during large rainfall events thus resulting in losses of less than 4% of each applied herbicide through runoff. Meanwhile the CI scheme resulted in losses of about 37%, 12% and 35% of the applied masses of simetryn, thiobencarb and mefenacet, respectively. The intermittent irrigation scheme using an automatic irrigation system with a high drainage gate saved irrigation water and prevented herbicide runoff whereas the continuous irrigation and overflow scheme resulted in significant losses of water as well as the herbicides. Maintaining the excess water storage is important for preventing paddy water runoff during significant rainfall events. The organic carbon partition coefficient Koc seems to be a strong indicator of the aquatic fate of the herbicide as compared to the water solubility (SW). However, further investigations are required to understand the relation between Koc and the agricultural practices upon the pesticide fate and transport. An extension of the water holding period up to 10 days after herbicide application based on the DT90 from the currently specified period of 3-4 days in Japan is recommended to be a good agricultural practice for controlling the herbicide runoff from paddy fields. Also, the best water management practice, which can be recommended for use during the water holding period, is the intermittent irrigation scheme using an automatic irrigation system with a high drainage gate. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The coal seam gas (CSG) industry is globally of potentially great importance economically. This study exemplifies the complex relationship between land use and management, groundwater impact and associated water treatment especially in relation to Queensland where a significant increase in the amount of gas extracted over the past 6 years has occurred. In order to effectively manage the environmental impact of the CSG industry it is necessary to appropriately understand the nature of the gas deposits, methods for gas collection, the physicochemical composition of the by-product associated water and the technologies available for water remediation. Australia is mainly considered arid and semi-arid and thus there is a need to not only beneficially reuse water resources but also protect existing ground water reservoirs such as the Great Artesian Basin (GAB). This paper focussed primarily on the Surat Basin located in Queensland and northern New South Wales. The mechanism for CSG formation, relation to local geological features, extraction approach and the potential impact/benefits of associated water was discussed. An outline of the current legislative requirements on physical and chemical properties of associated water in the Surat Basin was also provided, as well as the current treatment technologies used by the major CSG companies. This review was of significance in relation to the formulation of the most appropriate and cost effective management of associated water, while simultaneously preserving existing water resources and the environment.
Resumo:
Benchmarking irrigation performance has always been a challenge. As part of the Rural Water Use Efficiency (RWUE3) project the team in, collaboration with the Cotton Catchments Communities CRC, National Certificate of Educational Achievement and the Knowledge Management Phase 2 project, aimed to standardise the irrigation indices in use within the cotton industry. This was achieved through: - the delivery of training workshops - access to benchmarking tools - promotion of benchmarking as a best practice to be adopted on farm.
Resumo:
This project has contributed to the ecologically sustainable management of mangrove jack in Australia by providing comprehensive information on its biology, habitat requirements, population parameters and stock structure. Specifically, the project has resulted in an enhanced understanding of the life history of Australian mangrove jack, the levels of exploitation in its local fishery and the likely existence of a single genetic stock throughout Queensland.
Resumo:
Conservation and sustainable management of tropical forests needs a holistic approach: in addition to ecological concerns, socio-economic issues including cultural aspects must be taken into consideration. An ability to adapt practices is a key to successful collaborative natural resource management. Achieving this requires local participation and understanding of local conceptions of the environment. This study examined these issues in the context of northern Thailand. Northern uplands are the home of much of the remaining natural forest in Thailand and several ethnic minority groups commonly referred to as hill tribes. The overall purpose of this study was to grasp a regional view of an ethnically diverse forested area and to elicit prospects to develop community forestry for conservation purposes and for securing people s livelihood. Conservation was a central goal of management as the forests in the area were largely designated as protected. The aim was to study local perceptions, objectives, values and practices of forest management, under the umbrella of the concept environmental literacy, as well as the effects of forest policy on community management goals and activities. Environmental literacy refers to holistic understanding of the environment. It was used as a tool to examine people s views, interests, knowledge and motivation associated to forests. The material for this study was gathered in six villages in Chiang Mai Province. Three minority groups were included in the study, the Karen, Hmong and Lawa, and also the Thai. Household and focus group interviews were conducted in the villages. In addition, officials at district, regional and national levels, workers of non-governmental organisations, and academics were interviewed, and some data were gathered from the students of a local school. The results showed that motivation for protecting the forests existed among each ethnic group studied. This was a result of culture and traditions evolved in the forest environment but also of a need to adapt to a changed situation and environment and to outside pressures. The consequences of deforestation were widely agreed on in the villages, and the impact of socio-economic changes on the forests and livelihood was also recognised. The forest was regarded as a source of livelihood providing land, products and services essential to the people inhabiting rural uplands. Traditions, fire control, cooperation, reforestation, separation of protected and utilisable areas, and rules were viewed as central for conservation. For the villagers, however, conservation meant sustainable use, whereas the government has tended to prefer strict restrictions on forest resource use. Thus, conflicts had arisen. Between communities, cooperation was more dominant than conflict. The results indicated that the heterogeneity of forest dwellers, although it has to be recognised, should not be overemphasised: ethnic diversity can be considered as no major obstacle for successful community forestry. Collaborative management is particularly important in protected areas in order to meet the conservation goals while providing opportunities for livelihood. Forest management needs more positive incentives and increased dialogue.
Resumo:
The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.