936 resultados para surface oxide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In view of the important need to generate well-dispersed inorganic nanostructures in various solvents, we have explored the dispersion of nanostructures of metal oxides such as TiO2, Fe3O4 and ZnO in solvents of differing polarity in the presence of several surfactants. The solvents used are water, dimethylformamide (DMF) and toluene. The surfactant-solvent combinations yielding the best dispersions are reported alongwith some of the characteristics of the nanostructures in the dispersions. The surfactants which dispersed TiO2 nanowires in water were polyethylene oxide (PEO), Triton X-100 (TX-100), polyvinyl alcohol (PVA) and sodium bis(2-ethylhexyl) sulphosuccinate (AOT). TiO2 nanoparticles could also be dispersed with AOT and PEO in water, and with AOT in toluene. In DMF, PVA, PEO and TX-100 were found to be effective, while in toluene, only AOT gave good dispersions. Fe3O4 nanoparticles were held for long periods of time in water by PEO, AOT, PVA and polyethylene glycol (PEG), and by AOT in toluene. In the case of ZnO nanowires, the best surfactant-solvent combinations were found to be, PEO, sodium dodecyl sulphate (SIDS) and AOT in water and AOT, PEG, PVA, PEO and TX-100 in DMF In toluene, stable dispersions of ZnO nanowires were obtained with PEO. We have also been able to disperse oxide nanostructures in non-polar solvents by employing a hydrophobic silane coating on the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) is a method for thin film deposition which has been extensively studied for binary oxide thin film growth. Studies on multicomponent oxide growth by ALD remain relatively few owing to the increased number of factors that come into play when more than one metal is employed. More metal precursors are required, and the surface may change significantly during successive stages of the growth. Multicomponent oxide thin films can be prepared in a well-controlled way as long as the same principle that makes binary oxide ALD work so well is followed for each constituent element: in short, the film growth has to be self-limiting. ALD of various multicomponent oxides was studied. SrTiO3, BaTiO3, Ba(1-x)SrxTiO3 (BST), SrTa2O6, Bi4Ti3O12, BiTaO4 and SrBi2Ta2O9 (SBT) thin films were prepared, many of them for the first time by ALD. Chemistries of the binary oxides are shown to influence the processing of their multicomponent counterparts. The compatibility of precursor volatilities, thermal stabilities and reactivities is essential for multicomponent oxide ALD, but it should be noted that the main reactive species, the growing film itself, must also be compatible with self-limiting growth chemistry. In the cases of BaO and Bi2O3 the growth of the binary oxide was very difficult, but the presence of Ti or Ta in the growing film made self-limiting growth possible. The application of the deposited films as dielectric and ferroelectric materials was studied. Post-deposition annealing treatments in different atmospheres were used to achieve the desired crystalline phase or, more generally, to improve electrical properties. Electrode materials strongly influenced the leakage current densities in the prepared metal insulator metal (MIM) capacitors. Film permittivities above 100 and leakage current densities below 110-7 A/cm2 were achieved with several of the materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface oxidation of three metglasses in the Cu-Zr system has been investigated by employing X-ray photoelectron spectroscopy and Auger electron spectroscopy with a view to comparing their oxidation behaviour with that of the corresponding crystalline states of the alloys. Surface oxidation of pure Zr metal has also been examined in detail using these techniques. Sub-oxides of Zr are formed during the initial stages of oxidation of Zr (at oxygen exposures <10L), while at higher exposures, ZrO2 is formed together with the highest possible sub-oxide which the authors designate as 'ZrO'. The relative proportion of 'ZrO' goes through a maximum in the range 25-50 L. Both the glassy and the crystalline states of the Cu-Zr alloys exhibit preferential oxidation of Zr. The glassy alloys exhibit a higher rate of oxidation at intermediate exposures compared with the crystalline states of the alloys; the extent of oxidation at higher oxygen exposures is, however, higher for crystalline alloys. Interatomic Auger transitions have been found in the Zr+O2 system as well as in Cu-Zr alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, thin films annealed above 400 degrees C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a ``instability wheel'' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of heterojunctions between two crystals with different band gap structures, acting as a tunnel for the unidirectional transfer of photo-generated charges, is an efficient strategy to enhance photocatalytic performance in semiconductor photocatalysts. The heterojunctions may also promote the photoactivity in the visible-light-response of any surface complex catalysts by influencing the transfer of photo-generated electrons. Herein, Nb2O5 microfibers, with a high surface area of interfaces between an amorphous phase and crystalline phase, were designed and synthesised by the calcination of hydrogen-form niobate while controlling the crystallization The photoactivity of these microfibers towards selective aerobic oxidation reactions was investigated. As predicted, the Nb2O5 microfibres containing heterojunctions exhibited the highest photoactivity. This could be due to the band gap difference between the amorphous phase and the crystalline phase, which shortened the charge mobile distance and improved the efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water gas shift reaction was carried out over noble metal ion substituted nanocrystalline oxide catalysts with different supports. Spectroscopic studies of the catalysts before and after the reaction showed different surface phenomena occurring over the catalysts. Reaction mechanisms were proposed based upon the surface processes and intermediates formed. The dual site mechanism utilizing the oxide ion vacancies for water dissociation and metal ions for CO adsorption was proposed to describe the kinetics of the reaction over the reducible oxides like CeO2. A mechanism based on the interaction of adsorbed CO and the hydroxyl group was proposed for the reaction over ZrO2. A hybrid mechanism based on oxide ion vacancies and surface hydroxyl groups was proposed for the reaction over TiO2. The deactivation of the catalysts was also found to be support dependent. Kinetic models for both activation and deactivation were proposed. (C) 2010 American Institute of Chemical Engineers AIChE J, 56: 2662-2676, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surfactant-assisted seed-mediated growth method was used for the formation of gold nanorods (GNRs) directly on gold (Au) and indium tin oxide (ITO) surfaces. Citrate-stabilized similar to 2.6 nm spherical gold nanoparticles (AuNPs) were first self-assembled on ITO or Au surfaces modified with (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film and then immersed in a cationic surfactant growth solution to form GNRs. The growth of GNRs on the MPTS sol gel film modified ITO surface was monitored by UV-visible spectroscopy. The ITO surface with the attached spherical AuNPs shows a surface plasmon resonance band at 550 nm. The intensity of this absorption band increases while increasing the immersion time of the AuNP-modified ITO surface into the growth solution, and after 5 h, an additional shoulder band around 680 nm was observed. The intensity of this shoulder band increases, and it was shifted to longer wavelength as the immersion time of the AuNP-modified ITO surface into the growth solution increases. After 20 h, a predominant wave at 720 nm was observed along with a band at 550 nm. Further immersion of the modified ITO surface into the growth solution did not change the absorption characteristics. The bands observed at 550 and 720 nm were characteristics of GNRs, corresponding to transverse and longitudinal waves, respectively. The AFM images showed the presence of GNRs on the surface of the MPTS sol gel modified ITO surface with a typical length of similar to 100-120 nm and a width of similar to 20-22 nm in addition to a few spherical AuNPs, indicating that seeded spherical AuNPs were not completely involved in the GNRs' formation. Finally, the electrocatalytic activity of the surface-grown GNRs on the MPTS sol gel film modified Au electrode toward the oxidation of ascorbic acid (AA) was studied. Unlike a polycrystalline Au electrode, the surface-grown GNR-modified electrode shows two well-defined voltammetric peaks for AA at 0.01 and 0.35 V in alkaline, neutral, and acidic pHs. The cause for the observed two oxidation peaks for AA was due to the presence of both nanorods and spherical nanoparticles on the electrode surface. The presence of spherical AuNPs on the MPTS sol gel film oxidized AA at more positive potential, whereas the GNRs oxidized AA at less positive potential. The observed 340 mV less positive potential shift in the oxidation of AA suggested that GNRs are better electrocatalysts for the oxidation of AA than the spherical AuNPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxide materials like perovskite, zirconolite, hollandite, pyrochlore, NASICON and sphene which are used for nuclear waste immobilization have been prepared by a solution combustion process. The process involves the combustion of stoichiometric amount of corresponding metal nitrates and carbohydrazide/tetraformyl trisazine/diformyl hydrazide at 450 degrees C. The combustion products have been characterized using powder X-ray diffraction, infrared spectroscopy, and Si-29 MAS-NMR. The fine particle nature of the combustion derived powders has been studied using density, particle size, BET surface area measurements and scanning electron microscopy. Sintering of combustion derived powder yields 85-95% dense ceramics in the temperature range 1000 degrees-1300 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth and characterization of high-temperature-superconducting YBa2Cu3O7 and several metallic-oxide thin films by pulsed laser deposition is described here. An overview of substrates employed for epitaxial growth of perovskite-related oxides is presented. Ag-doped YBa2Cu3O7 films grown on bare sapphire are shown to give T-c = 90 K, critical current > 10(6) A/cm(2) at 77 K and surface resistance = 450 mu Omega. Application of epitaxial metallic LaNiO3 thin films as an electrode for ferroelectric oxide and as a normal metal layer barrier in the superconductor-normal metal-superconductor (SNS) Josephson junction is presented. Observation of giant magnetoresistance (GMR) in the metallic La0-6Pb0-4MnO3 thin films up to 50% is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The air-exposed surfaces of sintered and are-melted UC samples were examined by XPS and SIMS. XPS results indicate that the surface is covered with a very thin layer of UO2 mixed with free carbon, which would have formed along with the oxide during the reaction between UC and oxygen or moisture. From the SIMS depth profile of oxygen, the thickness of the oxide layer is found to be approximately 10 nm. The SIMS oxygen images of the surface as a function of etching time reveal that the surface of UC consists of a top layer of adsorbed moisture/oxygen; this contamination layer is followed by a layer containing uranium oxide, uranium hydroxide and free carbon and then grain boundary oxide and finally bulk UC. The behaviour of sintered and are-melted samples is similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction of Bacillus polymyxa with calcite, hematite, corundum and quartz resulted in significant surface chemical changes not only of the cells but also in the minerals. Both the cell surfaces as well as quartz particles were rendered more hydrophobic after mutual interaction, whilst the rest of the minerals exhibited enhanced hydrophilicity after interaction with the bacteria. The bacteria were also observed to be capable of dissolving calcite, hematite and corundum and biosorbing the dissolved metal ions to varying extents. An excess of polysaccharides could be observed on biotreated calcite, hematite and corundum while the predominance of a protein-based metabolic product was evident on quartz surfaces. The utility of bioprocessing in the beneficiation of the above minerals through bioflotation and bioflocculation is demonstrated. (C) 1997 Elsevier Science Ltd.