961 resultados para single-layer MoS2
Resumo:
The emergence of multiple Dirac cones in hexagonal boron nitride (hBN)-graphene heterostructures is particularly attractive because it offers potentially better landscape for higher and versatile transport properties than the primary Dirac cone. However, the transport coefficients of the cloned Dirac cones is yet not fully characterized and many open questions, including the evolution of charge dynamics and impurity scattering responsible for them, have remained unexplored. Noise measurements, having the potential to address these questions, have not been performed to date in dual-gated hBN graphene hBN devices. Here, we present the low frequency 1/f noise measurements at multiple Dirac cones in hBN encapsulated single and bilayer graphene in dual-gated geometry. Our results reveal that the low-frequency noise in graphene can be tuned by more than two-orders of magnitude by changing carrier concentration as well as by modifying the band structure in bilayer graphene. We find that the noise is surprisingly suppressed at the cloned Dirac cone compared to the primary Dirac cone in single layer graphene device, while it is strongly enhanced for the bilayer graphene with band gap opening. The results are explained with the calculation of dielectric function using tight-binding model. Our results also indicate that the 1/f noise indeed follows the Hooge's empirical formula in hBN-protected devices in dual-gated geometry. We also present for the first time the noise data in bipolar regime of a graphene device.
Resumo:
Metallic glasses have typically been treated as a “one size fits all” type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs.
Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing a 3.17 mm aluminum sphere at 2.7 km/s at it. The projectile penetrates the first two layers, but is successfully contained by the third.
A large series of metallic glass alloys are created and their wear loss is measured in a pin on disk test. Wear is found to vary dramatically among different metallic glasses, with some considerably outperforming the current state-of-the-art crystalline material (most notably Cu₄₃Zr₄₃Al₇Be₇). Others, on the other hand, suffered extensive wear loss. Commercially available Vitreloy 1 lost nearly three times as much mass in wear as alloy prepared in a laboratory setting. No conclusive correlations can be found between any set of mechanical properties (hardness, density, elastic, bulk, or shear modulus, Poisson’s ratio, frictional force, and run in time) and wear loss. Heat treatments are performed on Vitreloy 1 and Cu₄₃Zr₄₃Al₇Be₇. Anneals near the glass transition temperature are found to increase hardness slightly, but decrease wear loss significantly. Crystallization of both alloys leads to dramatic increases in wear resistance. Finally, wear tests under vacuum are performed on the two alloys above. Vitreloy 1 experiences a dramatic decrease in wear loss, while Cu₄₃Zr₄₃Al₇Be₇ has a moderate increase. Meanwhile, gears are fabricated through three techniques: electrical discharge machining of 1 cm by 3 mm cylinders, semisolid forging, and copper mold suction casting. Initial testing finds the pin on disk test to be an accurate predictor of wear performance in gears.
The final chapter explores an exciting technique in the field of additive manufacturing. Laser engineered net shaping (LENS) is a method whereby small amounts of metallic powders are melted by a laser such that shapes and designs can be built layer by layer into a final part. The technique is extended to mixing different powders during melting, so that compositional gradients can be created across a manufactured part. Two compositional gradients are fabricated and characterized. Ti 6Al¬ 4V to pure vanadium was chosen for its combination of high strength and light weight on one end, and high melting point on the other. It was inspected by cross-sectional x-ray diffraction, and only the anticipated phases were present. 304L stainless steel to Invar 36 was created in both pillar and as a radial gradient. It combines strength and weldability along with a zero coefficient of thermal expansion material. Only the austenite phase is found to be present via x-ray diffraction. Coefficient of thermal expansion is measured for four compositions, and it is found to be tunable depending on composition.
Resumo:
The pattern of energy release during the Imperial Valley, California, earthquake of 1940 is studied by analysing the El Centro strong motion seismograph record and records from the Tinemaha seismograph station, 546 km from the epicenter. The earthquake was a multiple event sequence with at least 4 events recorded at El Centro in the first 25 seconds, followed by 9 events recorded in the next 5 minutes. Clear P, S and surface waves were observed on the strong motion record. Although the main part of the earthquake energy was released during the first 15 seconds, some of the later events were as large as M = 5.8 and thus are important for earthquake engineering studies. The moment calculated using Fourier analysis of surface waves agrees with the moment estimated from field measurements of fault offset after the earthquake. The earthquake engineering significance of the complex pattern of energy release is discussed. It is concluded that a cumulative increase in amplitudes of building vibration resulting from the present sequence of shocks would be significant only for structures with relatively long natural period of vibration. However, progressive weakening effects may also lead to greater damage for multiple event earthquakes.
The model with surface Love waves propagating through a single layer as a surface wave guide is studied. It is expected that the derived properties for this simple model illustrate well several phenomena associated with strong earthquake ground motion. First, it is shown that a surface layer, or several layers, will cause the main part of the high frequency energy, radiated from the nearby earthquake, to be confined to the layer as a wave guide. The existence of the surface layer will thus increase the rate of the energy transfer into the man-made structures on or near the surface of the layer. Secondly, the surface amplitude of the guided SH waves will decrease if the energy of the wave is essentially confined to the layer and if the wave propagates towards an increasing layer thickness. It is also shown that the constructive interference of SH waves will cause the zeroes and the peaks in the Fourier amplitude spectrum of the surface ground motion to be continuously displaced towards the longer periods as the distance from the source of the energy release increases.
Resumo:
The single-layer and multilayer Sb-rich AgInSbTe films were irradiated by a single femtosecond laser pulse with the duration of 120 fs. The morphological feature resulting from the laser irradiation have been investigated by scanning electron microscopy and atom force microscopy. For the single-layer film, the center of the irradiated spot is a dark depression and the border is a bright protrusion; however, for the multilayer film, the center morphology changes from a depression to a protrusion as the energy increases. The crystallization threshold fluence of the single-layer and the multilayer films is 46.36 mJ/cm(2), 63.74 mJ/cm(2), respectively.
Resumo:
基于非均匀膜理论提出一种存在微缺陷的介质基底的折射率分层模型,将基底依次分为表面层、亚表面层和体材料层,其中表面层和亚面层分别等效为折射率服从统计分布的非均匀膜,将它们分别再次细分为N1和N2个子层,每一子层均视为均匀介质膜.应用光学薄膜特征矩阵法对其进行理论分析,并对单层介质膜的光学性能进行数值计算.研究结果表明:基底的表面和亚表面微缺陷改变了薄膜和基底的等效折射率,导致了准Brewster角和组合反射率与理想情形的偏离.同时这些微缺陷也改变了光在薄膜和基底中的传播特性,因此反射相移和相位差均偏离理想情
Resumo:
用离子束溅射法制备了锆单层薄膜.用设计新型夹具和预置种子方法,对薄膜中结瘤微缺陷的生长过程进行了研究.在高分辨率光学显微镜和扫描电子显微镜下观察发现,结瘤在其生长初期呈现出分形的特征.用分子动力学和薄膜生长的扩散限制聚集模型,薄膜中结瘤微缺陷成核时的分形现象得到了很好的解释.
Resumo:
利用德鲁德理论和洛伦兹一洛伦茨理论,从介电常数分析人手,探讨了混合介质膜的折射率表达式,给出利用双源共蒸法镀制的渐变折射率薄膜在混合介质膜的总沉积速率恒定、两种膜料的单分子大小近似相等和沉积速率均为线性变化时的折射率表达式;从正变和负变、单周期和多周期、不同的周期数和不同的单周期厚度几个方面对渐变折射率薄膜的光学特性进行了模拟分析和讨论;对渐变折射率薄膜的实现、应用以及实验制备中有待进一步解决和处理的问题进行了讨论。
Resumo:
A method for the design of an all-dielectric nonpolarizing prism beam splitter utilizing the principle of frustrated total internal reflection is reported. The nonpolarizing condition for a prism beam splitter is discussed, and some single layer design examples are elaborated. The concept can be applied to a wide range of wavelengths and arbitrary transmittance values, and with the help of a computer design program examples of 400-700 nm, T-p = T-p = 0.5 +/- 0.01, with incident angles of 45 degrees and 62 degrees are given. In addition, the sensitivity and application of the design are also discussed. (c) 2006 Optical Society of America.
Resumo:
用电子束热蒸发方法在熔融石英基底上沉积了Al2O3和MgF2两种材料的单层膜,研究了两种材料的光学特性,采用光度法计算并给出了薄膜材料在180~230nm的折射率n/和消光系数k的色散曲线。以两种材料作为高低折射率材料组合,采用1/4波长规整膜系设计并镀制了193nm的高反射膜,反射膜在退火后的反射率在193nm达到96%以上。结果表明在一定工艺条件下Al2O3和MgF2两种材料能够在193nm获得较好的光学性能,适用于高反射膜的制备。
Resumo:
用电子束蒸发制备了用于掺钛蓝宝石啁啾脉冲放大激光系统的TiO2/HfO2/SiO2高反膜,其带宽约为176nm(R>98%, λ0=800nm),激光损伤阈值(LIDT)为2.4 J/cm2。通过TiO2和HfO2单层膜的透过光谱计算了这两种材料的折射率和消光系数。高反膜的性能主要由高折射率材料决定:折射率越高,反射带越宽;消光系数越小,薄膜吸收越小,LIDT越高。最后,讨论了高反膜的激光损伤机制。
Resumo:
Thermal boat evaporation was employed to prepare MgF2 single-layer coatings upon both JGS1 and UBK7 substrates at different substrate temperatures. Microstructure, transmittance and residual stress of these coatings were measured by X-ray diffraction, spectrophotometer, and optical interferometer, respectively. Measurement of laser induced damage threshold (LIDT) of the samples was performed at 355 nm, 8 ns pulses. The results showed that high substrate temperature was beneficial to crystallization of the film. Above 244 degrees C, the refractive index increased gradually with the substrate temperature rising. Whereas, it was exceptional at 210 degrees C that the refractive index was higher than those deposited at 244 and 277 degrees C. The tensile residual stresses were exhibited in all MgF2 films, but not well correlated with the substrate temperature. In addition, the stresses were comparatively smaller upon JGS1 substrates. A tendency could be seen that the LIDTs reached the highest values at about 244 degrees C, and the films upon JGS1 had higher LIDTs than those upon UBK7 substrates at the same temperature. Meanwhile, the damage morphologies showed that the laser damage of the coating resulted from an absorbing center at the film-substrate interface. The features of the damages were displayed by an absorbing center dominated model. Furthermore, the reason of the difference in LIDT values was discussed in detail. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
对表面热透镜技术测量光学薄膜弱吸收低频调制时不同基底对测量的影响进行了理论分析。用Lambda-900分光光度计测量了K9和石英基底的Ti3O5单层膜的吸收值,将该组样品作为定标片;用表面热透镜装置分别测量了BK7和石英空白基底及HfO2,ZnO两组不同基底不同厚度单层膜样品的吸收。通过分析比较同一工艺条件下镀制的不同基底薄膜样品用与其同种和不同种基底定标片定标测量的结果,表明在低频测量时需要用与测量样品同种基底的定标片定标;不同厚度样品的测量结果表明,在不能严格满足热薄条件时,测量结果需引入修正值。
Resumo:
abstract {LaF3 single-layer coatings were prepared by thermal boat evaporation at the deposition temperatures of 189, 255, 277 and 321°C respectively. The crystal structures of the coatings were characterized by X-ray diffraction (XRD). A spectrophotometer was employed to measure its transmittance. Moreover, refractive index, extinction coefficient and cut-off wavelength were obtained from the measured transmittance spectral curve. The residual stress was evaluated by the Stoney's equation and optical interferometer. Laser induce damage threshold (LIDT) was performed by a tripled Nd:YAG laser system. The results show that the crystallization status becomes better with the deposition temperature increasing. Correspondingly, the grain size also gets larger. Meanwhile, the coatings become more compact and the refractive index increases. However, the absorption of coatings seriously rises and the cut-off wavelength drifts to the long wave. In addition, the residual stress also increases and the intrinsic stress plays a determinant role in the coating. The LIDT of the coating also enhances at high temperature.}
Resumo:
用热舟蒸发方法在不同的沉积速率下制备了LaF3单层膜,并对部分单层膜进行了真空退火。分别采用X射线衍射(XRD),Lambda 900 光谱仪和355 nm Nd∶YAG脉冲激光测试了薄膜的晶体结构、透射光谱和激光损伤阈值(LIDT),并通过透射光谱计算得到样品的折射率和消光系数。实验结果表明,增大沉积速率有利于LaF3薄膜的结晶和择优生长,可以提高薄膜的致密性和折射率,但薄膜的抗激光损伤能力有所下降;沉积速率太大,又会恶化薄膜的结晶性能,同时薄膜中产生大量孔洞,薄膜的机械强度降低,导致薄膜的折射率减小和
Resumo:
在4H-SiC基底上设计并制备了Al2O3/SiO2紫外双层减反射膜,通过扫描电镜(SEM)和实测反射率谱来验证理论设计的正确性。利用编程计算得到Al2O3和SiO2的最优物理膜厚分别为42.0nm和96.1nm以及参考波长λ=280nm处最小反射率为0.09%。由误差分析可知,实际镀膜时保持双层膜厚度之和与理论值一致有利于降低膜系反射率。实验中应当准确控制SiO2折射率并使Al2O3折射率接近1.715。用电子束蒸发法在4H-SiC基底上淀积Al2O3/SiO2双层膜,厚度分别为42nm和96nm。SEM截面图表明淀积的薄膜和基底间具有较强的附着力。实测反射率极小值为0.33%,对应λ=276nm,与理论结果吻合较好。与传统SiO2单层膜相比,Al2O3/SiO2双层膜具有反射率小,波长选择性好等优点,从而论证了其在4H-SiC基紫外光电器件减反射膜上具有较好的应用前景。