1000 resultados para simulação computacional


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O item não apresenta o texto completo, pois está passando por revisão editorial

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural ventilation is an efficient bioclimatic strategy, one that provides thermal comfort, healthful and cooling to the edification. However, the disregard for quality environment, the uncertainties involved in the phenomenon and the popularization of artificial climate systems are held as an excuse for those who neglect the benefits of passive cooling. The unfamiliarity with the concept may be lessened if ventilation is observed in every step of the project, especially in the initial phase in which decisions bear a great impact in the construction process. The tools available in order to quantify the impact of projected decisions consist basically of the renovation rate calculations or computer simulations of fluids, commonly dubbed CFD, which stands for Computational Fluid Dynamics , both somewhat apart from the project s execution and unable to adapt for use in parametric studies. Thus, we chose to verify, through computer simulation, the representativeness of the results with a method of simplified air reconditioning rate calculation, as well as making it more compatible with the questions relevant to the first phases of the project s process. The case object consists of a model resulting from the recommendations of the Código de Obras de Natal/ RN, customized according to the NBR 15220. The study has shown the complexity in aggregating a CFD tool to the process and the need for a method capable of generating data at the compatible rate to the flow of ideas and are discarded during the project s development. At the end of our study, we discuss the necessary concessions for the realization of simulations, the applicability and the limitations of both the tools used and the method adopted, as well as the representativeness of the results obtained

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This master thesis aims to assess the influence of the design decisions on the energy building performance of hotels. The research is based on the integration of field study and computer simulation. Firstly, a detailed field study is carried out to identify the characteristics of hotels in Natal, Rio Grande do Norte. The items assessed are occupancies, light and equipment densities, types of air conditioning, total and monthly energy consumption, among others. A second and more comprehensive field study is carried out to identify the range of occurrence of architectural variables, with a larger number of buildings. A base case is modelled in VisualDOE, based on the first field study. Then, a first set of simulations are run to explore the sensitivity of the variables on the energy consumption. The results analyses were the base of a second set of simulations, which combined the most influential variables. The results of 384 models were assessed, and the impacts of design decisions were quantified. The study discusses tendencies and recommendations, as well as the methods advantages and disadvantages

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na unfolding method of linear intercept distributions and secction área distribution was implemented for structures with spherical grains. Although the unfolding routine depends on the grain shape, structures with spheroidal grains can also be treated by this routine. Grains of non-spheroidal shape can be treated only as approximation. A software was developed with two parts. The first part calculates the probability matrix. The second part uses this matrix and minimizes the chi-square. The results are presented with any number of size classes as required. The probability matrix was determined by means of the linear intercept and section area distributions created by computer simulation. Using curve fittings the probability matrix for spheres of any sizes could be determined. Two kinds of tests were carried out to prove the efficiency of the Technique. The theoretical tests represent ideal cases. The software was able to exactly find the proposed grain size distribution. In the second test, a structure was simulated in computer and images of its slices were used to produce the corresponding linear intercept the section area distributions. These distributions were then unfolded. This test simulates better reality. The results show deviations from the real size distribution. This deviations are caused by statistic fluctuation. The unfolding of the linear intercept distribution works perfectly, but the unfolding of section area distribution does not work due to a failure in the chi-square minimization. The minimization method uses a matrix inversion routine. The matrix generated by this procedure cannot be inverted. Other minimization method must be used

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we developed a computer simulation program for physics porous structures based on programming language C + + using a Geforce 9600 GT with the PhysX chip, originally developed for video games. With this tool, the ability of physical interaction between simulated objects is enlarged, allowing to simulate a porous structure, for example, reservoir rocks and structures with high density. The initial procedure for developing the simulation is the construction of porous cubic structure consisting of spheres with a single size and with varying sizes. In addition, structures can also be simulated with various volume fractions. The results presented are divided into two parts: first, the ball shall be deemed as solid grains, ie the matrix phase represents the porosity, the second, the spheres are considered as pores. In this case the matrix phase represents the solid phase. The simulations in both cases are the same, but the simulated structures are intrinsically different. To validate the results presented by the program, simulations were performed by varying the amount of grain, the grain size distribution and void fraction in the structure. All results showed statistically reliable and consistent with those presented in the literature. The mean values and distributions of stereological parameters measured, such as intercept linear section of perimeter area, sectional area and mean free path are in agreement with the results obtained in the literature for the structures simulated. The results may help the understanding of real structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work develops a robustness analysis with respect to the modeling errors, being applied to the strategies of indirect control using Artificial Neural Networks - ANN s, belong to the multilayer feedforward perceptron class with on-line training based on gradient method (backpropagation). The presented schemes are called Indirect Hybrid Control and Indirect Neural Control. They are presented two Robustness Theorems, being one for each proposed indirect control scheme, which allow the computation of the maximum steady-state control error that will occur due to the modeling error what is caused by the neural identifier, either for the closed loop configuration having a conventional controller - Indirect Hybrid Control, or for the closed loop configuration having a neural controller - Indirect Neural Control. Considering that the robustness analysis is restrict only to the steady-state plant behavior, this work also includes a stability analysis transcription that is suitable for multilayer perceptron class of ANN s trained with backpropagation algorithm, to assure the convergence and stability of the used neural systems. By other side, the boundness of the initial transient behavior is assured by the assumption that the plant is BIBO (Bounded Input, Bounded Output) stable. The Robustness Theorems were tested on the proposed indirect control strategies, while applied to regulation control of simulated examples using nonlinear plants, and its results are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method of artificial lift of progressing cavity pump is very efficient in the production of oils with high viscosity and oils that carry a great amount of sand. This characteristic converted this lift method into the second most useful one in oil fields production. As it grows the number of its applications it also increases the necessity to dominate its work in a way to define it the best operational set point. To contribute to the knowledge of the operational method of artificial lift of progressing cavity pump, this work intends to develop a computational simulator for oil wells equipped with an artificial lift system. The computational simulator of the system will be able to represent its dynamic behavior when submitted to the various operational conditions. The system was divided into five subsystems: induction motor, multiphase flows into production tubing, rod string, progressing cavity pump and annular tubing-casing. The modeling and simulation of each subsystem permitted to evaluate the dynamic characteristics that defined the criteria connections. With the connections of the subsystems it was possible to obtain the dynamic characteristics of the most important arrays belonging to the system, such as: pressure discharge, pressure intake, pumping rate, rod string rotation and torque applied to polish string. The shown results added to a friendly graphical interface converted the PCP simulator in a great potential tool with a didactic characteristic in serving the technical capability for the system operators and also permitting the production engineering to achieve a more detail analysis of the dynamic operational oil wells equipped with the progressing cavity pump

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot