982 resultados para photoluminescence (PL)
Resumo:
Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Boron-doped (B-doped) silicon nanowires (SiNWS) have been prepared and characterized by Raman scattering and photoluminescence (PL). B-doped SiNWS were grown by plasma enhanced chemical vapor deposition (PECVD), using diborane (B2H6) as the dopant gas. Raman spectra show a band at 480cm(-1),which is attributed to amorphous silicon. Photoluminescence at room temperature exhibits three distinct emission peaks at 1.34ev, 1.42ev, 1.47ev. Possible reason for these is suggested.
Resumo:
A systematic investigation on the photoluminescence (PL) properties of InxGa1-xAs/AlyGa1-xAs (x = 0.15, y = 0, 0.33) strained quantum wells (SQWs) with well widths from 1.7 to 11.0 nm has been performed at 77 K under high pressure up to 40 kbar. The experimental results show that the pressure coefficients of the exciton peaks corresponding to transitions from the first conduction subband to the heavy-hole subband increase from 10.05 meV/kbar of 11.0 nm well to 10.62 meV/kbar of 1.8 nm well for In0.15Ga0.85As/GaAs SQWs. However, the corresponding pressure coefficients slightly decrease from 9.93 meV/kbar of 9.0 nm well to 9.73 meV/kbar of 1.7 nm well for In0.15Ga0.85As/Al0.33Ga0.67As SQWs. Calculations based on the Kronig-Penney model reveal that the increased or decreased barrier heights and the increased effective masses with pressure are the main reasons of the change in the pressure coefficients.
Resumo:
The photoluminescence (PL) response of porous silicon is usually in the form of a single broad peak. Recently, however, PL response with two peaks has been reported. Here we report the observation of multiple peaks in the PL spectrum of porous silicon. A simple modeling of the line shape indicates that four peaks exist within the response curve, and analysis suggests that the PL of porous silicon is derived from quantum confinement in the silicon crystallites. The line shapes can be due to either minibands within the conduction and valence bands or crystallite size variation or a combination of the two.
Resumo:
A high energy shift of the band-band recombination has been observed in the photoluminescence (PL) spectra of the strained InP epilayer on GaAs by metalorganic chemical vapor deposit. The strain determined by PL peak is in good agreement with calculated thermal strain. The surface photovoltalic spectra gives the information about energy gap, lattice mismatching, and composition of heteroepilayers, diffusion length, surface, and interface recombination velocity of minority carriers of heteroepitaxy layers.
Resumo:
The chemical adsorption of sodium sulphide, ferrocene, hydroquinone and p-methyl-nitrobenzene onto the surface of a GaAs/AlxGa1-xAs multiquantum well semiconductor was characterized by steady state and time-resolved photoluminescence (PL) spectroscopy. The changes in the PL response, including the red shift of the emission peak of the exciton in the quantum well and the enhancement of the PL intensity, are discussed in terms of the interactions of the adsorbed molecules with surface states.
Resumo:
In the photoluminescence (PL) of BaFBr:Eu2+,Eu3+, the emissions of Ea(2+), carrier electron-hole (e-h) recombination, and Eu3+ are observed, while in the photostimulated luminescence (PSL) only the emission of Eu2+ is exhibited. This disappearance of e-h recombination in PSL is considered to be caused by carrier migration during photo-stimulation. (C) 1997 American Institute of Physics.
Resumo:
Photoluminescence enhancement of (NH4)(2)S-x passivated InP surface followed by rapid thermal annealing (RTA) has been investigated by using photoluminescence (PL), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), An increase in PL intensity of up to 10 times was observed after sulfur passivation and RTA treatment compared to unpassivated InP surface. XPS measurement results show that introduction of RTA process can enhance the sulfur remaining on the passivated surface to bond to indium but no evidence of S-P bond is noticeable. Passivation enhancement mechanism is discussed.
Resumo:
Photoluminescence (PL) and electrical characteristics of SI-GaAs, Si+-implanted and following rapid thermal annealing (RTA), were investigated, The PL spectra of Si-GA-C-As, Ga-i-Si-As, and V-As-Si-As were obtained. This paper concentrates on the PL peak at 1.36 eV which was proven as an emission of the Si-Ga-V-Ga combination by Si+ + P+ dual implantation. The results indicate that the peak at 1.36 eV appears when the ratio of As:Ga increased during the processing. Also high activation was obtained for the sample under the same conditions. More discussion on the mechanism of Si+ implanted SI-GaAs has been made based on the Morrow model [J. Appl. Phys, 64 (1988) 1889].
Resumo:
The photoluminescence (PL) and photostimulated luminescence (PSL) of BaFBr: Eu phosphors are reported. In the photoluminescence of BaFBr:Eu, the emission of Eu2+, e-h recombination and Eu3+ have been observed, while in the photostimulated luminescence only the emission of Eu2+ was observed. This phenomenon may be explained well by the suggestion of a two-hand model for the host emission in which the host emission energy may transfer to Eu2+ difference of excitation in those two processes results in different transfer rates which makes the PL and PSL emission different.
Resumo:
Optical properties of ordered Ga0.5In0.5P epitaxial layers grown by metalorganic vapor phase epitaxy are investigated by photoluminescence (PL) in a temperature range of 10-200 K using excitation power densities between 0.35 W/cm(2) and 20 W/cm(2). It is found that the intensity of the highest-energy PL peak of the ordered Ga0.5In0.5P epilayer decreases first, then increases and finally goes down again with increasing temperature. A model of ordered Ga0.5In0.5P epitaxial layers is proposed, in which the ordered Ga0.5In0.5P epilayer is regarded as a type-II quantum well structure with band-tail states, and the dependence of PL spectra on the temperature and excitation intensity is reasonably explained. (C) 1995 American Institute of Physics.
Resumo:
Photoluminescence (PL) is used to study the interface properties of GaAs/AlGaAs quantum well (QW) heterostructures prepared by molecular beam epitaxy with growth interruption (GI). The discrete luminescence lines observed for the sample with GI are assigned to the splitting of the heavy-hole exciton associated with heterointerface islands with the lateral size greater than exciton diameter and mean height less than one monolayer, and the spectra have the Gaussian lineshapes. The results strongly support the microroughness model. We also study the temperature dependence of the exciton energies and find that excitons are localized at the interface roughness at low temperature even in the sample with GI. The lateral size of the microroughness of the GI sample is estimated to be less than 5 nm from the exciton localization energy.
Resumo:
Self-organized In_(0.5)Ga_(0.5)As/GaAs quantum island structure emitting at 1. 35 (im at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs)_1/( GaAs)_1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In_(0.5)Ga_(0.5)As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.
Resumo:
Two quaternary InAlGaN films were grown by metal-organic chemical-vapor deposition (MOCVD) on sapphire (0001) substrates with and without high-temperature GaN interlayer, respectively. The structural and optical properties of the quaternary films were investigated by high-resolution X-ray diffraction (HRXRD), high-resolution electron microscopy (HREM), temperature-dependent photoluminescence (PL) spectroscopy and time-resolved photoluminescence (TRPL) spectroscopy. According to the HRXRD and PL results, it is demonstrated that two samples have the same crystal quality. The TRPL signals of both samples were fitted well as a stretched exponential decay from 14 K to 250 K, indicating significant disorder in the materials, which is attributed to recombination of excitons localized in disorder quantum nanostructures such as quantum dots or quantum disks originating from indium (In) clusters or In composition fluctuation. The cross-section HREM measurement further proves that there exist disorder quantum nanostructures in the quaternary. By investigating the temperature dependence of the dispersive exponent beta, it is shown that the stretched exponential decays of the two samples originate from different mechanisms. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoluminescence characterization of 1.3 mu m In(Ga)As/GaAs islands grown by molecular beam epitaxy
Resumo:
1.3 mum wavelength In(Ga)As/GaAs nanometer scale islands grown by molecular beam epitaxy (MBE) were characterized by photoluminescence (PL) and atomic force microscopy (AFM) measurements. It is shown that inhomogeneous broadening of optical emission due to fluctuation of the In0.5Ga0.5As islands both in size and in compositions can be effectively suppressed by introducing a AlAs layer and a strain reduction In0.2Ga0.8As layer overgrown on top of the islands, 1.3mum emission wavelength with narrower line-width less than 20meV at room temperature was obtained.