979 resultados para magnetic circular dichroism


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hallmark of mammalian spermiogenesis is the dramatic chromatin remodeling process wherein the nucleosomal histones are replaced by the transition proteins TP1, TP2, and TP4. Subsequently these transition proteins are replaced by the protamines P1 and P2. Hyperacetylation of histone H4 is linked to their replacement by transition proteins. Here we report that TP2 is acetylated in vivo as detected by anti-acetylated lysine antibody and mass spectrometric analysis. Further, recombinant TP2 is acetylated in vitro by acetyltransferase KAT3B (p300) more efficiently than by KAT2B (PCAF). In vivo p300 was demonstrated to acetylate TP2. p300 acetylates TP2 in its C-terminal domain, which is highly basic in nature and possesses chromatin-condensing properties. Mass spectrometric analysis showed that p300 acetylates four lysine residues in the C-terminal domain of TP2. Acetylation of TP2 by p300 leads to significant reduction in its DNA condensation property as studied by circular dichroism and atomic force microscopy analysis. TP2 also interacts with a putative histone chaperone, NPM3, wherein expression is elevated in haploid spermatids.Interestingly, acetylation of TP2 impedes its interaction with NPM3. Thus, acetylation of TP2 adds a new dimension to its role in the dynamic reorganization of chromatin during mammalian spermiogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Achieving stabilization of telomeric DNA in G-quadruplex conformation by Various organic compounds has been an important goal for the medicinal chemists seeking to develop new anticancer agents. Several compounds are known to stabilize G-quadruplexes. However, relatively few are known to induce their formation and/or alter the topology, of the preformed quadruplex DNA. Herein, four compounds having the 1,3-phenylene-bis(piperazinyl benzimidazole) unit as a basic skeleton have been synthesized, and their interactions with the 24-mer telomeric DNA sequences from Tetrahymena thermophilia d(T(2)G(4))(4) have been investigated using high-resolution techniques Such as circular dichroism (CD) spectropolarimetry, CD melting, emission spectroscopy, and polyacrylamide gel electrophoresis. The data obtained, in the presence of one of three ions (Li+, Na+, or K+), indicate that all the new compounds have a high affinity for G-quadruplex DNA, and the strength of the binding with G-quadruplex depends on (1) phenyl ring substitution, (ii) the piperazinyl side chain, and (iii) the type of monovalent cation present in the buffer. Results further Suggest that these compounds are able to abet the conversion of the Intramolecular quadruplex into parallel stranded intermolecular G-quadruplex DNA. Notably, these compounds are also capable of inducing and stabilizing the parallel stranded quadruplex from randomly structured DNA in the absence of any stabilizing cation. The kinetics of the structural changes Induced by these compounds could be followed by recording the changes in the CD signal as a function of time. The implications of the findings mentioned above are discussed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Histones H1a and H1t are two major linker histone variants present at the pachytene interval of mammalian spermatogenesis. The DNA- and chromatin-condensing properties of these two variants isolated from rat testes were studied and compared with those from rat liver. For this purpose, the histone H1 subtypes were purified from the respective tissues using bath acid and salt extraction procedures, Circular dichroism studies revealed that acid exposure during isolation affects the alpha-helical structure of both the globular domain (in the presence of 1 M NaCl) and the C-terminal lambda-tail (in the presence of 60% trifluoroethanol). The condensation of rat oligonucleosomal DNA, as measured by circular dichroism spectroscopy, by the salt-extracted histone H1 was at least 10 times more efficient than condensation by the acid-extracted histone H1. A site size of 16-20 base pairs was calculated for the salt-extracted histone H1. Among the different histone H1 subtypes, somatic histone H1bdec had the highest DNA-condensing property, followed by histone H1a and histone H1t. All the salt-extracted histones condensed rat oligonucleosomal DNA more efficiently than linear pBR-322 DNA, Histones H1bdec and H1a condensed histone H1-depleted chromatin, prepared from rat liver nuclei, with relatively equal efficiency. On the other hand, there was no condensation of histone H1-depleted chromatin with the testes specific histone H1t. A comparison of the amino acid sequences of histone H1d (rat) and histone H1t (rat) revealed several interesting differences in the occurrence of DNA-binding motifs at the C-terminus. A striking observation is the presence of a direct repeat of an octapeptide motif K(A)T(S)PKKA(S)K(T)K(A) in histone H1d that is absent in histone H1t.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Histones H1a and H1t are two major linker histone variants present at the pachytene interval of mammalian spermatogenesis. The DNA- and chromatin-condensing properties of these two variants isolated from rat testes were studied and compared with those from rat liver. For this purpose, the histone H1 subtypes were purified from the respective tissues using bath acid and salt extraction procedures, Circular dichroism studies revealed that acid exposure during isolation affects the alpha-helical structure of both the globular domain (in the presence of 1 M NaCl) and the C-terminal lambda-tail (in the presence of 60% trifluoroethanol). The condensation of rat oligonucleosomal DNA, as measured by circular dichroism spectroscopy, by the salt-extracted histone H1 was at least 10 times more efficient than condensation by the acid-extracted histone H1. A site size of 16-20 base pairs was calculated for the salt-extracted histone H1. Among the different histone H1 subtypes, somatic histone H1bdec had the highest DNA-condensing property, followed by histone H1a and histone H1t. All the salt-extracted histones condensed rat oligonucleosomal DNA more efficiently than linear pBR-322 DNA, Histones H1bdec and H1a condensed histone H1-depleted chromatin, prepared from rat liver nuclei, with relatively equal efficiency. On the other hand, there was no condensation of histone H1-depleted chromatin with the testes specific histone H1t. A comparison of the amino acid sequences of histone H1d (rat) and histone H1t (rat) revealed several interesting differences in the occurrence of DNA-binding motifs at the C-terminus. A striking observation is the presence of a direct repeat of an octapeptide motif K(A)T(S)PKKA(S)K(T)K(A) in histone H1d that is absent in histone H1t.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have used circular dichroism as a probe to characterize the solution conformational changes in RecA protein upon binding to DNA. This approach revealed that RecA protein acquires significant amounts of alpha-helix upon interaction with DNA. These observations, consistent with the data from crystal structure (Story, R. M., Weber, I., and Steitz, T. (1992) Nature 355, 318-325), support the notion that some basic domains including the DNA binding motifs of RecA protein are unstructured and might contribute to the formation of alpha-helix. A comparison of nucleoprotein filaments comprised of RecA protein and a variety of DNA substrates revealed important structural heterogeneity. The most significant difference was observed with poly(dG). poly(dC) and related polymers, rich in GC sequences, which induced minimal amounts of alpha-helix in RecA protein. The magnitude of induction of alpha-helix in RecA protein, which occurred concomitant with the production of ternary complexes, was 2-fold higher with homologous than heterologous duplex DNA. Most importantly, the stimulation of ATP hydrolysis by high salt coincided with that of the induction of alpha-helix in RecA protein. These conformational differences provide a basis for thinking about the biochemical and structural transitions that RecA protein experiences during the formal steps of presynapsis, recognition, and alignment of homologous sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here, we present the synthesis, photochemical, and DNA binding properties of three photoisomerizable azobenzene−distamycin conjugates in which two distamycin units were linked via electron-rich alkoxy or electron-withdrawing carboxamido moieties with the azobenzene core. Like parent distamycin A, these molecules also demonstrated AT-specific DNA binding. Duplex DNA binding abilities of these conjugates were found to depend upon the nature and length of the spacer, the location of protonatable residues, and the isomeric state of the conjugate. The changes in the duplex DNA binding efficiency of the individual conjugates in the dark and with their respective photoirradiated forms were examined by circular dichroism, thermal denaturation of DNA, and Hoechst displacement assay with poly[d(A-T).d(T-A)] DNA in 150 mM NaCl buffer. Computational structural analyses of the uncomplexed ligands using ab initio HF and MP2 theory and molecular docking studies involving the conjugates with duplex d[(GC(AT)10CG)]2 DNA were performed to rationalize the nature of binding of these conjugates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, produced in P. pastoris GS115, using ammonia/glycerol-methanol as nitrogen/carbon sources, the N-glycosylation pattern of phCG, synthesized using NH4Cl/glucose–glycerol–methanol, comprised neutral and charged, phosphorylated high-mannose-type N-glycans (Man8–15GlcNAc2). However, the changed culturing protocol led to much higher amounts of glycoprotein material, which is of importance for an economical realistic approach of the aimed NMR research. In the context of these studies, attention was also paid to the site specific N-glycosylation in phCG produced in P. pastoris GS115. In contrast to the rather simple N-glycosylation pattern of phCG expressed in the GS115 strain, phCG and phFSH expressed in the X-33 strain revealed, besides neutral high-mannose-type N-glycans, also high concentrations of neutral hypermannose-type N-glycans (Manup-to-30GlcNAc2). The latter finding made the X-33 strain not very suitable for generating 15N-labeled material. Therefore, 15N-phCG was expressed in the GS115 strain using the new optimized protocol. The 15N-enrichment was evaluated by 15N-HSQC NMR spectroscopy and GLC-EI/MS. Circular dichroism studies indicated that 15N-phCG/GS115 had the same folding as urinary hCG. Furthermore, 15N-phCG/GS115 was found to be similar to the unlabeled protein in every respect as judged by radioimmunoassay, radioreceptor assays, and in vitro bioassays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies of double-stranded-DNA binding have been performed with three isomeric bis)2-(n-pyridyl)-1H-benzimidazole)s (n = 2, 3, 4). Like the well-known Hoechst 33258, which is a bisbenzimidazole compound, these three isomers bind to the minor groove of duplex DNA. DNA binding by the three isomers was investigated in the presence of the divalent metal ions Mg2+, Co2+, Ni2+, Cu2+, and Zn2+. Ligand-DNA interactions were probed with fluorscence and circular dichroism spectroscopy. These studies revealed that the binding of the 2-pyridyl derivative to DNA is dramatically reduced in the presence of Co2+, Ni2+, and Cu2+ ions and is abolished completely at a ligand/metal-cation ratio of 1:1. Control experiments done with the isomeric 3- and 4-pyridyl derivatives showed that their binding to DNA is unaffected by the aforementioned transition-metal ions. The ability of 2-(2-pyridyl)benzimidazole changes of the ligand associated with ion chelation probably ledto such unusual binding results for the ortho isomer. The addition of ethylenediaminetetraacetic acid (EDTA) reversed the effects completely.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear Overhauser effects (NOE) and circular dichroism (CD) techniques have been used to probe @-turn conformations in acyclic and cyclic peptides containingPro-Xsequences. The model peptides studied are of the type Piv-Pro-X-NHMe (X = Aib, D-Ala, Gly, Val, and Leu) and Boc-Cys-Pro-X-C s NHMe (X = Aib, L-Ala, D-Ala, Gly, and Leu). In the acyclic series, observation of NOES between Pro C"H and X-NH, together with solvent and temperature dependence of NH chemical shifts, establishes a 4 - 1 hydrogen bond stabilized type I1 @-turn in the Gly, D-Ala, and Aib peptides, in CDC13 and (CD3)2S0. A positive n-r* CD band at -225-230 nm appears to be characteristic of this structure. For the acyclic Pro-Leu peptide the observation of NOE's for both Pro and Leu C"H resonances on saturation of Leu NH is compatible with a type V bend or consecutive y-turn conformation. In the cyclic disulfide series the Pro-Aib and Pro-D-Ala peptides favor type I1 @-turns, whereas all other peptides adopt type I (111) conformations. All the cyclic disulfides exhibit an intense negative CD band at -228-230 nm. The results suggest thatgeneralcorrelations between CD spectral type and specific 0-turn conformations may not be obtained. Evidence for solvent-dependent structural changes in the Pro-Aib sequence in both cyclic and acyclic peptides is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The C-m(urea)/C-m(GdmCl) ratio (where C-m is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide crosslinked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74') and (13'-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol-disulfide exchange.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of inserting unsubstituted omega-amino acids into the strand segments of model beta-hairpin peptides was investigated by using four synthetic decapeptides, Boc-Lcu-Val-Xxx-Val-D-Pro-Gly-Leu-Xxx-Val-Val- OMe: pepticle 1 (Xxx=Gly), pepticle 2 (Xxx=beta Gly=beta hGly=homoglycine, beta-glycine), pepticle 3 (Xxx=gamma Abu=gamma-aminobutyric acid), pepticle 4 (Xxx= delta Ava=delta-aminovaleric acid). H-1 NMR studies (500 MHz, methanol) reveal several critical cross-strand NOEs, providing evidence for P-hairpin conformations in peptides 2-4. In peptide 3, the NMR results support the formation of the nucleating turn, however, evidence for cross-strand registry is not detected. Single-crystal X-ray diffraction studies of peptide 3 reveal a beta-hairpin conformation for both molecules in the crystallographic asymmetric unit, stabilized by four cross-strand hydrogen bonds, with the gamma Abu residues accommodated within the strands. The D-Pro-Gly segment in both molecules (A,B) adopts a type II' beta-turn conformation. The circular dichroism spectrum for peptide 3 is characterized by a negative CD band at 229 rim, whereas for peptides 2 and 4, the negative band is centered at 225 nm, suggesting a correlation between the orientation of the amide units in the strand segments and the observed CD pattern.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of the peripherally associated membrane protein cytochrome c (cyt c) to bind phospholipids in vitro was studied using fluorescence spectroscopy and large unilamellar liposomes. Previous work has shown that cyt c can bind phospholipids using two distinct mecha- nisms and sites, the A-site and the C-site. This binding is mediated by electrostatic or hydrophobic interactions, respectively. Here, we focus on the mechanism underlying these interactions. A chemically modified cyt c mutant Nle91 was used to study the ATP-binding site, which is located near the evolutionarily invariant Arg 91 on the protein surface. This site was also demonstrated to mediate phospholipid binding, possibly by functioning as a phospholipid binding site. Circular dichroism spectroscopy, time resolved fluorescence spectroscopy of zinc- porphyrin modified [Zn2+-heme] cyt c and liposome binding studies of the Nle91 mutant were used to demonstrate that ATP induces a conformational change in membrane- bound cyt c. The ATP-induced conformational changes were mediated by Arg 91 and were most pronounced in cyt c bound to phospholipids via the C-site. It has been previously reported that the hydrophobic interaction between phospho- lipids and cyt c (C-site) includes the binding of a phospholipid acyl chain inside the protein. In this mechanism, which is known as extended phospholipid anchorage, the sn-2 acyl chain of a membrane phospholipid protrudes out of the membrane surface and is able to bind in a hydrophobic cavity in cyt c. Direct evidence for this type of bind- ing mechanism was obtained by studying cyt c/lipid interaction using fluorescent [Zn2+- heme] cyt c and fluorescence quenching of brominated fatty acids and phospholipids. Under certain conditions, cyt c can form fibrillar protein-lipid aggregates with neg- atively charged phospholipids. These aggregates resemble amyloid fibrils, which are involved in the pathogenesis of many diseases. Congo red staining of these fibers con- firmed the presence of amyloid structures. A set of phospholipid-binding proteins was also found to form similar aggregates, suggesting that phospholipid-induced amyloid formation could be a general mechanism of amyloidogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of 2′-5′-oligoguanylic acids are prepared by reacting G(cyclic)p with takadiastase T1 ribonuclease and separating the products chromatographically. The 3′-5′-oligoguanylic acids are obtained by separating the products of alkaline degradation of 3′-5′-poly(G). The optical rotatory dispersion and hypochromism of both 2′-5′- and 3′-5′-oligoguanylic acids are studied at two different pH. The optical rotatory dispersion spectrum of 2′-5′-GpG is significantly different from that of 3′-5′-GpG. The magnitude of rotation of the long-wavelength peak of 2′-5′-GpG is larger than that of 3′-5′-GpG. This finding contradicts the explanation that the extra stability and more intense circular dichroism band of other 3′-5′-dinucleoside monophosphates is due to H-bond formation between 2′-OH and either the base or the phosphate oxygen. The end phosphate group has a marked effect on the spectrum of GpG between 230 and 250 mμ. In addition the optical rotatory dispersion spectra of 2′-5′ exhibit strong pH, temperature, and solvent dependence between 230 and 250 mμ. ΔH and AS for order ⇌ disorder transition is estimated to be 9.7 kcal/mole and 35.2 eu, respectively. The optical rotatory dispersion spectra of guanine-rich oligoribonucleotides, GpGpC, GpGpU, GpGpGpC, and GpGpGpU are compared to the calculated optical rotatory dispersion from the semiempirical expression of Cantor and Tinoco, using measured optical rotatory dispersion of dimers. Contrary to previous studies, agreement is found not at all satisfactory. However, optical rotatory dispersion of 3′-5′-GpGpGpC and GpGpGpU can be estimated from the semiempirical expression, if a next-nearest interaction parameter is introduced empirically. Such interaction parameter can be calculated from the measured properties of trinucleotide sequences like GpGpG, GpGpC, and GpGpU, assuming that only the nearest-neighbor interaction is important. The optical rotatory dispersion of single-stranded poly(G) is also predicted. The importance of syn-anti equilibrium and next-nearest-neighbor interaction in oligoguanylic acids is suggested as a probable explanation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3.The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM).The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. (C) 2010 Elsevier B.V. All rights reserved.