672 resultados para learning analytics framework
Resumo:
In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data.
Resumo:
Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences and societal changes require innovation of existing practices. This paper proposes a framework with relevant dimensions providing insight into precipitated characteristics of designed as well as ‘fostered or grown’ networked learning initiatives. Networked learning initiatives are characterized as “goal-directed, interest-, or needs based activities of a group of (at least three) individuals that initiate interaction across the boundaries of their regular social systems”. The proposed framework is based on two existing research traditions, namely 'networked learning' and 'learning networks', comparing, integrating and building upon knowledge from both perspectives. We uncover some interesting differences between definitions, but also similarities in the way they describe what ‘networked’ means and how learning is conceptualized. We think it is productive to combine both research perspectives, since they both study the process of learning in networks extensively, albeit from different points of view, and their combination can provide valuable insights in networked learning initiatives. We uncover important features of networked learning initiatives, characterize actors and connections of which they are comprised and conditions which facilitate and support them. The resulting framework could be used both for analytic purposes and (partly) as a design framework. In this framework it is acknowledged that not all successful networks have the same characteristics: there is no standard ‘constellation’ of people, roles, rules, tools and artefacts, although there are indications that some network structures work better than others. Interactions of individuals can only be designed and fostered till a certain degree: the type of network and its ‘growth’ (e.g. in terms of the quantity of people involved, or the quality and relevance of co-created concepts, ideas, artefacts and solutions to its ‘inhabitants’) is in the hand of the people involved. Therefore, the framework consists of dimensions on a sliding scale. It introduces a structured and analytic way to look at the precipitation of networked learning initiatives: learning networks. Successive research on the application of this framework and feedback from the networked learning community is needed to further validate it’s usability and value to both research as well as practice.
Resumo:
Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences and societal changes require innovation of existing practices. This paper proposes a framework with relevant dimensions providing insight into precipitated characteristics of designed as well as ‘fostered or grown’ networked learning initiatives. Networked learning initiatives are characterized as “goal-directed, interest-, or needs based activities of a group of (at least three) individuals that initiate interaction across the boundaries of their regular social systems”. The proposed framework is based on two existing research traditions, namely 'networked learning' and 'learning networks', comparing, integrating and building upon knowledge from both perspectives. We uncover some interesting differences between definitions, but also similarities in the way they describe what ‘networked’ means and how learning is conceptualized. We think it is productive to combine both research perspectives, since they both study the process of learning in networks extensively, albeit from different points of view, and their combination can provide valuable insights in networked learning initiatives. We uncover important features of networked learning initiatives, characterize actors and connections of which they are comprised and conditions which facilitate and support them. The resulting framework could be used both for analytic purposes and (partly) as a design framework. In this framework it is acknowledged that not all successful networks have the same characteristics: there is no standard ‘constellation’ of people, roles, rules, tools and artefacts, although there are indications that some network structures work better than others. Interactions of individuals can only be designed and fostered till a certain degree: the type of network and its ‘growth’ (e.g. in terms of the quantity of people involved, or the quality and relevance of co-created concepts, ideas, artefacts and solutions to its ‘inhabitants’) is in the hand of the people involved. Therefore, the framework consists of dimensions on a sliding scale. It introduces a structured and analytic way to look at the precipitation of networked learning initiatives: learning networks. Successive research on the application of this framework and feedback from the networked learning community is needed to further validate it’s usability and value to both research as well as practice.
Resumo:
This article introduces the Evaluation Framework EFI for the Impact Measurement of learning, education and training: The Evaluation Framework for Impact Measurement was developed for specifying the evaluation phase and its objectives and tasks within the IDEAL Reference Model for the introduction and optimization of quality development within learning, education and training. First, a description of the Evaluation Framework for Impact Measurement will be provided, followed by a brief overview of the IDEAL Reference Model. Finally, an example for the implementation of the Evaluation Framework for Impact Measurement within the ARISTOTELE project is presented.
Resumo:
Different types of serious games have been used in elucidating computer science areas such as computer games, mobile games, Lego-based games, virtual worlds and webbased games. Different evaluation techniques have been conducted like questionnaires, interviews, discussions and tests. Simulation have been widely used in computer science as a motivational and interactive learning tool. This paper aims to evaluate the possibility of successful implementation of simulation in computer programming modules. A framework is proposed to measure the impact of serious games on enhancing students understanding of key computer science concepts. Experiments will be held on the EEECS of Queen’s University Belfast students to test the framework and attain results.
Resumo:
Sequences of timestamped events are currently being generated across nearly every domain of data analytics, from e-commerce web logging to electronic health records used by doctors and medical researchers. Every day, this data type is reviewed by humans who apply statistical tests, hoping to learn everything they can about how these processes work, why they break, and how they can be improved upon. To further uncover how these processes work the way they do, researchers often compare two groups, or cohorts, of event sequences to find the differences and similarities between outcomes and processes. With temporal event sequence data, this task is complex because of the variety of ways single events and sequences of events can differ between the two cohorts of records: the structure of the event sequences (e.g., event order, co-occurring events, or frequencies of events), the attributes about the events and records (e.g., gender of a patient), or metrics about the timestamps themselves (e.g., duration of an event). Running statistical tests to cover all these cases and determining which results are significant becomes cumbersome. Current visual analytics tools for comparing groups of event sequences emphasize a purely statistical or purely visual approach for comparison. Visual analytics tools leverage humans' ability to easily see patterns and anomalies that they were not expecting, but is limited by uncertainty in findings. Statistical tools emphasize finding significant differences in the data, but often requires researchers have a concrete question and doesn't facilitate more general exploration of the data. Combining visual analytics tools with statistical methods leverages the benefits of both approaches for quicker and easier insight discovery. Integrating statistics into a visualization tool presents many challenges on the frontend (e.g., displaying the results of many different metrics concisely) and in the backend (e.g., scalability challenges with running various metrics on multi-dimensional data at once). I begin by exploring the problem of comparing cohorts of event sequences and understanding the questions that analysts commonly ask in this task. From there, I demonstrate that combining automated statistics with an interactive user interface amplifies the benefits of both types of tools, thereby enabling analysts to conduct quicker and easier data exploration, hypothesis generation, and insight discovery. The direct contributions of this dissertation are: (1) a taxonomy of metrics for comparing cohorts of temporal event sequences, (2) a statistical framework for exploratory data analysis with a method I refer to as high-volume hypothesis testing (HVHT), (3) a family of visualizations and guidelines for interaction techniques that are useful for understanding and parsing the results, and (4) a user study, five long-term case studies, and five short-term case studies which demonstrate the utility and impact of these methods in various domains: four in the medical domain, one in web log analysis, two in education, and one each in social networks, sports analytics, and security. My dissertation contributes an understanding of how cohorts of temporal event sequences are commonly compared and the difficulties associated with applying and parsing the results of these metrics. It also contributes a set of visualizations, algorithms, and design guidelines for balancing automated statistics with user-driven analysis to guide users to significant, distinguishing features between cohorts. This work opens avenues for future research in comparing two or more groups of temporal event sequences, opening traditional machine learning and data mining techniques to user interaction, and extending the principles found in this dissertation to data types beyond temporal event sequences.
Resumo:
As an effect of marketisation, the importance of workplace learning in Germany has increased. The article follows up on the long-standing discourse around the question of how economic and pedagogical ideals interact in this context. In order to develop a theoretical framework for empirical research, three major positions of the discipline of business ethics are introduced. Business ethics in more abstract ways deals with the very same question, namely how do ideas such as profit orientation interact with other norms and values? The new perspectives show that the discourse has been hitherto based on a specific understanding of economy. In order to derive an empirical answer to the research question, the question is re-formulated as follows: Which values are inherent in the decisions taken? Consequently, it suggests using the concept of ‘rationalities of justification’ for empirical research. The article shows how this concept can be applied by conducting a test run. (DIPF/Orig.)
Resumo:
Within an action research framework, this paper describes the conceptual basis for developing a crossdisciplinary pedagogical model of higher education/industry engagement for the built environment design disciplines including architecture, interior design, industrial design and landscape architecture. Aiming to holistically acknowledge and capitalize on the work environment as a place of authentic learning, problems arising in practice are understood as the impetus, focus and ‘space’ for a process of inquiry and discovery that, in the spirit of Boyer’s ‘Scholarship of Integration’, provides for generic as well as discipline-specific learning.
Resumo:
The weaknesses of ‗traditional‘ modes of instruction in accounting education have been widely discussed. Many contend that the traditional approach limits the ability to provide opportunities for students to raise their competency level and allow them to apply knowledge and skills in professional problem solving situations. However, the recent body of literature suggests that accounting educators are indeed actively experimenting with ‗non-traditional‘ and ‗innovative‘ instructional approaches, where some authors clearly favour one approach over another. But can one instructional approach alone meet the necessary conditions for different learning objectives? Taking into account the ever changing landscape of not only business environments, but also the higher education sector, the premise guiding the collaborators in this research is that it is perhaps counter productive to promote competing dichotomous views of ‗traditional‘ and ‗non-traditional‘ instructional approaches to accounting education, and that the notion of ‗blended learning‘ might provide a useful framework to enhance the learning and teaching of accounting. This paper reports on the first cycle of a longitudinal study, which explores the possibility of using blended learning in first year accounting at one campus of a large regional university. The critical elements of blended learning which emerged in the study are discussed and, consistent with the design-based research framework, the paper also identifies key design modifications for successive cycles of the research.
Resumo:
Information and Communication Technologies (ICTs) provide great promise for the future of education. In the Asia-Pacific region, many nations have started working towards the comprehensive development of infrastructure to enable the development of strong networked educational systems. In Queensland there have been significant initiatives in the past decade to support the integration of technology in classrooms and to set the conditions for the enhancement of teaching and learning with technology. One of the great challenges is to develop our classrooms to make the most of these technologies for the benefit of student learning. Recent research and theory into cognitive load, suggests that complex information environments may well impose a barrier on student learning. Further, it suggests that teachers have the capacity to mitigate against cognitive load through the way they prepare and support students engaging with complex information environments. This chapter compares student learning at different levels of cognitive load to show that learning is enhanced when integrating pedagogies are employed to mitigate against high-load information environments. This suggests that a mature policy framework for ICTs in education needs to consider carefully the development of professional capacities to effectively design and integrate technologies for learning.
Resumo:
Thirty-five clients who had received counselling completed a letter to a friend describing in as much detail as possible what they had learned from counselling. The participants' written responses were analysed and classified using the Structure of Learning Outcomes (SOLO) taxonomy. The results suggested that an expanded SOLO offers a promising and exciting way to view the outcomes of counselling within a learning framework. If the SOLO taxonomy is found to be stable in subsequent research, and clients are easily able to be classified using the taxonomy, then this approach may have implications for the process of counselling. To maximise the learning outcomes, counsellors could use strategies and techniques to enhance their clients' learning.