925 resultados para interface gestuelle
Resumo:
An interface between two polar semiconductors can support a whole new family of seven type of optic-phonon magnetoplasmons. Six of these arise due to nonequivalence property of propagation introduced by the magnetic field in Voigt configuration and one mainly due to finite plasma density ratio at the interface.
Resumo:
A mathematical model for doped-oxide-source diffusion is proposed. In this model the concept of segregation of impurity at the silicon-silicon dioxide is used and also a constant of “rate limitation” is introduced through a chemical reaction at the interface.
Resumo:
Magnetoplasmon-type surface polaritons are studied at the interfaces of sandwich structures in the configuration with a magnetic field oriented parallel to the interface but perpendicular to the direction of wave propagation. It is shown that the propagation window for the surface polaritons is shifted to higher frequencies in the presence of the magnetic field directed positively. On reversal of the magnetic field an additional low frequency propagation band appears. Irrespective of the direction and strength of the magnetic field there exists a certain frequency range in which interface polaritons cannot propagate. For sandwich structures for which the dielectric constant and the plasma frequency of one medium are simultaneously greater or less than those of the second medium gaps and multiple branches can appear in the propagation window either for n > 0 or n <; 0 waves. A graphical method for the estimation of critical ranges of B0 and dielectric constant ratios for different sandwich structures, within which gaps and multiple branches appear, is given
Resumo:
A closed form solution is presented for determining the shape and location of the interface between two dissimilar fluids (having different densities) when steady flow takes place through a homogeneous and isotropic porous medium, into a sheetpile cofferdam; the interface is assumed to be sharp and the lower fluid stationary. The solution is obtained using the inverse hodograph. Numerical results are presented in nondimensional form for various parametric conditions in the physical plane; the interface pattern, as also the seepage discharge and exit gradient distribution are shown. The critical conditions of the interface are studied.
Resumo:
The adsorption of proteins at the interface between two immiscible electrolyte solutions has been found to be key to their bioelectroactivity at such interfaces. Combined with interfacial complexation of organic phase anions by cationic proteins, this adsorption process may be exploited to achieve nanomolar protein detection. In this study, replica exchange molecular dynamics simulations have been performed to elucidate for the first time the molecular mechanism of adsorption and subsequent unfolding of hen egg white lysozyme at low pH at a polarized 1,2-dichloroethane/water interface. The unfolding of lysozyme was observed to occur as soon as it reaches the organic−aqueous interface,which resulted in a number of distinct orientations at the interface. In all cases, lysozyme interacted with the organic phase through regions rich in nonpolar amino acids, such that the side chains are directed toward the organic phase, whereas charged and polar residues were oriented toward the aqueous phase. By contrast, as expected, lysozyme in neat water at low pH does not exhibit significant structural changes. These findings demonstrate the key influence of the organic phase upon adsorption of lysozyme under the influence of an electric field, which results in the unfolding of its structure.
Resumo:
This work presents a numerical analysis of simultaneous mould filling and phase change for solidification in a two-dimensional rectangular cavity. The role of residual flow strength and temperature gradients within the solidifying domain, caused by the filling process, on the evolution of solidification interface are investigated. An implicit volume of fluid (VOF)-based algorithm has been employed for simulating the free surface flows during the filling process, while the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modeling is coupled with VOF through User Defined Functions developed in the commercial computational fluid dynamics (CFD) code FLUENT 6.3.26. Comparison between results of the conventional analysis without filling effect and those of the present analysis shows that the residual flow resulting from the filling process significantly influences the progress of the solidification interface. A parametric study is also performed with variables such as cooling rate, filling velocity and filling configuration, in order to investigate the coupled effects of the buoyancy-driven flow and the residual flow on the solidification behavior.
Resumo:
Glycodelin A is a progesterone-induced endometrial glycoprotein which has been amply documented to play a role in down-modulation of the maternal immune response to fetal allo-antigens and to be indispensable for the maintenance and progression of pregnancy. Earlier studies from our laboratory have focused on the effect of glycodelin on T cells, key regulators of both the antibody and cell-mediated arms of the acquired immune system. Glycodelin-induced apoptosis inactivated T cells occurs through a caspase-dependant intrinsic mitochondrial pathway. Interestingly, glycodelin inhibited the proliferation of B cells but did not induce apoptosis. More recently, we have studied the effect of glycodelin on the cells of the innate immune system, namely monocytes and NK cells. We have found that glycodelin induced apoptosis in monocytic cells before their differentiation to macrophages, via the mitochondrial pathway, but did not affect their phagocytic capacity after differentiation. Glycodelin induced apoptosis in NK cells but this activity was independent of caspases. In conclusion, glycodelin is observed to affect many cells of the immune system, although the nature of the effect and signaling mechanisms involved in each cell type may be distinct.
Resumo:
Background: The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the C alpha atoms which are modeled with modest accuracy. Methodology/Principal Findings: In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of C alpha atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of C alpha. We extend the method further to recognize potential protein-protein interface residues. Conclusion/Significance: Our approach to identify buried and exposed residues solely from the positions of C alpha atoms resulted in an accuracy of 84%, sensitivity of 83-89% and specificity of 67-94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70-96% and specificity of 58-94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from C alpha positions and all-atom models suggested that, recognition of interfacial residues using C alpha atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only C alpha positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.
Resumo:
House loss during unplanned bushfires is a complex phenomenon where design, configuration, material and siting, can significantly influence the loss. In collaboration with the Bushfire Cooperative Research Centre the CSIRO has developed a tool to assess the vulnerability of a specific house at the urban interface. The tool is based on a spatial profiling of urban assets including their design, material, surrounding objects and their relationship amongst one another. The analysis incorporates both probabilistic and deterministic parameters, and is based on the impact of radiant heat, flame and embers on the surrounding elements and the structure itself. It provides a breakdown of the attributes and design parameters that contribute to the vulnerability level. This paper describes the tool which allows the user to explore the vulnerability of a house to varying levels of bushfire attacks. The tool is aimed at government agencies interested in building design, town planning and community education for bushfire risk mitigation.
Resumo:
The concept of domain integral used extensively for J integral has been applied in this work for the formulation of J(2) integral for linear elastic bimaterial body containing a crack at the interface and subjected to thermal loading. It is shown that, in the presence of thermal stresses, the J(k) domain integral over a closed path, which does not enclose singularities, is a function of temperature and body force. A method is proposed to compute the stress intensity factors for bimaterial interface crack subjected to thermal loading by combining this domain integral with the J(k) integral. The proposed method is validated by solving standard problems with known solutions.
Resumo:
The well known features of crack face interpenetration/contact at the tip of an interface crack is re-examined using finite element analysis and assuming material nonlinear properties for the adherends. It was assumed in literature that the crack tips are fully open at all load levels in the presence of material nonlinearity of the adherends. Analysis for the case of remote tension shows that even in the presence of material nonlinearity, crack tip closes at small load levels and opens above a certain load level. Mixed-mode fracture parameters are evaluated for the situation when the crack tips are fully open. Due to the presence of nonlinearity, the mixed-mode fracture parameters are measured with the symmetric and anti-symmetric components of J-integral. The present analysis explains the sequence of events at the interface crack tip with progressively increasing remote tension load for the case of adherends with material nonlinear behaviour.
Resumo:
Within the history of twentieth-century design, there are a number of well-known objects and stories that are invoked time and time again to capture a pivotal moment or summarize a much broader historical transition. For example, Marcel Breuer’s Model B3 chair is frequently used as a stand-in for the radical investigations of form and new industrial materials occurring at the Bauhaus in the mid-1920s. Similarly, Raymond Loewy’s streamlined pencil sharpener has become historical shorthand for the emergence of modern industrial design in the 1930s. And any discussion of the development of American postwar “organic design” seems incomplete without reference to Charles and Ray Eames’s molded plywood leg splint of 1942. Such objects and narratives are dear to historians of modern design. They are tangible, photogenic subjects that slot nicely into exhibitions, historical surveys, and coffee-table best sellers...
Resumo:
In this paper we first present the 'wet N2O' furnace oxidation process to grow nitrided tunnel oxides in the thickness range 6 to 8 nm on silicon at a temperature of 800 degrees C. Electrical characteristics of MOS capacitors and MOSFETs fabricated using this oxide as gate oxide have been evaluated and the superior features of this oxide are ascertained The frequency response of the interface states, before and after subjecting the MOSFET gate oxide to constant current stress, is studied using a simple analytical model developed in this work.
Resumo:
We investigate the events near the fusion interfaces of dissimilar welds using a phase-field model developed for single-phase solidification of binary alloys. The parameters used here correspond to the dissimilar welding of a Ni/Cu couple. The events at the Ni and the Cu interface are very different, which illustrate the importance of the phase diagram through the slope of the liquidus curves. In the Ni side, where the liquidus temperature decreases with increasing alloying, solutal melting of the base metal takes place; the resolidification, with continuously increasing solid composition, is very sluggish until the interface encounters a homogeneous melt composition. The growth difficulty of the base metal increases with increasing initial melt composition, which is equivalent to a steeper slope of the liquidus curve. In the Cu side, the initial conditions result in a deeply undercooled melt and contributions from both constrained and unconstrained modes of growth are observed. The simulations bring out the possibility of nucleation of a concentrated solid phase from the melt, and a secondary melting of the substrate due to the associated recalescence event. The results for the Ni and Cu interfaces can be used to understand more complex dissimilar weld interfaces involving multiphase solidification.
Resumo:
New metal-organic frameworks (MOFs) [Ni(C12N2H10)(H2O)][C6H3(COO)2(COOH)] (I), [Co2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (II), [Ni2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (III), [Ni(C13N2H14)(H2O)][C6H3(COO)2(COOH)] (IV), [Ni3(H2O)8][C6H3(COO)3] (V) and [Co(C4N2H4)(H2O)][C6H3(COO)3] (VI) {C6H3(COOH)3 = trimesic acid, C12N2H10 = 1,10-phenanthroline, C4N2H12 = piperazine dication, C13N2H14 = 1,3-bis(4-pyridyl)propane and C4N2H4 = pyrazine} have been synthesized by using an interface between two immiscible solvents, water and cyclohexanol. The compounds are constructed from the connectivity between the octahedral M2+ (M = Ni, Co) ions coordinated by oxygen atoms of carboxylate groups and water molecules and/or by nitrogen atoms of the ligand amines and the carboxylate units to form a variety of structures of different dimensionality. Strong hydrogen bonds of the type O-H···O are present in all the compounds, which give rise to supramolecularly organized higher-dimensional structures. In some cases ··· interactions are also observed. Magnetic studies indicate weak ferromagnetic interactions in I, IV and V and weak antiferromagnetic interactions in the other compounds (II, III and VI). All the compounds have been characterized by a variety of techniques.