984 resultados para infinite dimensional differential geometry
Resumo:
Esta tesis considera dos tipos de aplicaciones del diseño óptico: óptica formadora de imagen por un lado, y óptica anidólica (nonimaging) o no formadora de imagen, por otro. Las ópticas formadoras de imagen tienen como objetivo la obtención de imágenes de puntos del objeto en el plano de la imagen. Por su parte, la óptica anidólica, surgida del desarrollo de aplicaciones de concentración e iluminación, se centra en la transferencia de energía en forma de luz de forma eficiente. En general, son preferibles los diseños ópticos que den como resultado sistemas compactos, para ambos tipos de ópticas (formadora de imagen y anidólica). En el caso de los sistemas anidólicos, una óptica compacta permite tener costes de producción reducidos. Hay dos razones: (1) una óptica compacta presenta volúmenes reducidos, lo que significa que se necesita menos material para la producción en masa; (2) una óptica compacta es pequeña y ligera, lo que ahorra costes en el transporte. Para los sistemas ópticos de formación de imagen, además de las ventajas anteriores, una óptica compacta aumenta la portabilidad de los dispositivos, que es una gran ventaja en tecnologías de visualización portátiles, tales como cascos de realidad virtual (HMD del inglés Head Mounted Display). Esta tesis se centra por tanto en nuevos enfoques de diseño de sistemas ópticos compactos para aplicaciones tanto de formación de imagen, como anidólicas. Los colimadores son uno de los diseños clásicos dentro la óptica anidólica, y se pueden utilizar en aplicaciones fotovoltaicas y de iluminación. Hay varios enfoques a la hora de diseñar estos colimadores. Los diseños convencionales tienen una relación de aspecto mayor que 0.5. Con el fin de reducir la altura del colimador manteniendo el área de iluminación, esta tesis presenta un diseño de un colimador multicanal. En óptica formadora de imagen, las superficies asféricas y las superficies sin simetría de revolución (o freeform) son de gran utilidad de cara al control de las aberraciones de la imagen y para reducir el número y tamaño de los elementos ópticos. Debido al rápido desarrollo de sistemas de computación digital, los trazados de rayos se pueden realizar de forma rápida y sencilla para evaluar el rendimiento del sistema óptico analizado. Esto ha llevado a los diseños ópticos modernos a ser generados mediante el uso de diferentes técnicas de optimización multi-paramétricas. Estas técnicas requieren un buen diseño inicial como punto de partida para el diseño final, que será obtenido tras un proceso de optimización. Este proceso precisa un método de diseño directo para superficies asféricas y freeform que den como resultado un diseño cercano al óptimo. Un método de diseño basado en ecuaciones diferenciales se presenta en esta tesis para obtener un diseño óptico formado por una superficie freeform y dos superficies asféricas. Esta tesis consta de cinco capítulos. En Capítulo 1, se presentan los conceptos básicos de la óptica formadora de imagen y de la óptica anidólica, y se introducen las técnicas clásicas del diseño de las mismas. El Capítulo 2 describe el diseño de un colimador ultra-compacto. La relación de aspecto ultra-baja de este colimador se logra mediante el uso de una estructura multicanal. Se presentará su procedimiento de diseño, así como un prototipo fabricado y la caracterización del mismo. El Capítulo 3 describe los conceptos principales de la optimización de los sistemas ópticos: función de mérito y método de mínimos cuadrados amortiguados. La importancia de un buen punto de partida se demuestra mediante la presentación de un mismo ejemplo visto a través de diferentes enfoques de diseño. El método de las ecuaciones diferenciales se presenta como una herramienta ideal para obtener un buen punto de partida para la solución final. Además, diferentes técnicas de interpolación y representación de superficies asféricas y freeform se presentan para el procedimiento de optimización. El Capítulo 4 describe la aplicación del método de las ecuaciones diferenciales para un diseño de un sistema óptico de una sola superficie freeform. Algunos conceptos básicos de geometría diferencial son presentados para una mejor comprensión de la derivación de las ecuaciones diferenciales parciales. También se presenta un procedimiento de solución numérica. La condición inicial está elegida como un grado de libertad adicional para controlar la superficie donde se forma la imagen. Basado en este enfoque, un diseño anastigmático se puede obtener fácilmente y se utiliza como punto de partida para un ejemplo de diseño de un HMD con una única superficie reflectante. Después de la optimización, dicho diseño muestra mejor rendimiento. El Capítulo 5 describe el método de las ecuaciones diferenciales ampliado para diseños de dos superficies asféricas. Para diseños ópticos de una superficie, ni la superficie de imagen ni la correspondencia entre puntos del objeto y la imagen pueden ser prescritas. Con esta superficie adicional, la superficie de la imagen se puede prescribir. Esto conduce a un conjunto de tres ecuaciones diferenciales ordinarias implícitas. La solución numérica se puede obtener a través de cualquier software de cálculo numérico. Dicho procedimiento también se explica en este capítulo. Este método de diseño da como resultado una lente anastigmática, que se comparará con una lente aplanática. El diseño anastigmático converge mucho más rápido en la optimización y la solución final muestra un mejor rendimiento. ABSTRACT We will consider optical design from two points of view: imaging optics and nonimaging optics. Imaging optics focuses on the imaging of the points of the object. Nonimaging optics arose from the development of concentrators and illuminators, focuses on the transfer of light energy, and has wide applications in illumination and concentration photovoltaics. In general, compact optical systems are necessary for both imaging and nonimaging designs. For nonimaging optical systems, compact optics use to be important for reducing cost. The reasons are twofold: (1) compact optics is small in volume, which means less material is needed for mass-production; (2) compact optics is small in size and light in weight, which saves cost in transportation. For imaging optical systems, in addition to the above advantages, compact optics increases portability of devices as well, which contributes a lot to wearable display technologies such as Head Mounted Displays (HMD). This thesis presents novel design approaches of compact optical systems for both imaging and nonimaging applications. Collimator is a typical application of nonimaging optics in illumination, and can be used in concentration photovoltaics as well due to the reciprocity of light. There are several approaches for collimator designs. In general, all of these approaches have an aperture diameter to collimator height not greater than 2. In order to reduce the height of the collimator while maintaining the illumination area, a multichannel design is presented in this thesis. In imaging optics, aspheric and freeform surfaces are useful in controlling image aberrations and reducing the number and size of optical elements. Due to the rapid development of digital computing systems, ray tracing can be easily performed to evaluate the performance of optical system. This has led to the modern optical designs created by using different multi-parametric optimization techniques. These techniques require a good initial design to be a starting point so that the final design after optimization procedure can reach the optimum solution. This requires a direct design method for aspheric and freeform surface close to the optimum. A differential equation based design method is presented in this thesis to obtain single freeform and double aspheric surfaces. The thesis comprises of five chapters. In Chapter 1, basic concepts of imaging and nonimaging optics are presented and typical design techniques are introduced. Readers can obtain an understanding for the following chapters. Chapter 2 describes the design of ultra-compact collimator. The ultra-low aspect ratio of this collimator is achieved by using a multichannel structure. Its design procedure is presented together with a prototype and its evaluation. The ultra-compactness of the device has been approved. Chapter 3 describes the main concepts of optimizing optical systems: merit function and Damped Least-Squares method. The importance of a good starting point is demonstrated by presenting an example through different design approaches. The differential equation method is introduced as an ideal tool to obtain a good starting point for the final solution. Additionally, different interpolation and representation techniques for aspheric and freeform surface are presented for optimization procedure. Chapter 4 describes the application of differential equation method in the design of single freeform surface optical system. Basic concepts of differential geometry are presented for understanding the derivation of partial differential equations. A numerical solution procedure is also presented. The initial condition is chosen as an additional freedom to control the image surface. Based on this approach, anastigmatic designs can be readily obtained and is used as starting point for a single reflective surface HMD design example. After optimization, the evaluation shows better MTF. Chapter 5 describes the differential equation method extended to double aspheric surface designs. For single optical surface designs, neither image surface nor the mapping from object to image can be prescribed. With one more surface added, the image surface can be prescribed. This leads to a set of three implicit ordinary differential equations. Numerical solution can be obtained by MATLAB and its procedure is also explained. An anastigmatic lens is derived from this design method and compared with an aplanatic lens. The anastigmatic design converges much faster in optimization and the final solution shows better performance.
Resumo:
Esta tesis aborda la formulación, análisis e implementación de métodos numéricos de integración temporal para la solución de sistemas disipativos suaves de dimensión finita o infinita de manera que su estructura continua sea conservada. Se entiende por dichos sistemas aquellos que involucran acoplamiento termo-mecánico y/o efectos disipativos internos modelados por variables internas que siguen leyes continuas, de modo que su evolución es considerada suave. La dinámica de estos sistemas está gobernada por las leyes de la termodinámica y simetrías, las cuales constituyen la estructura que se pretende conservar de forma discreta. Para ello, los sistemas disipativos se describen geométricamente mediante estructuras metriplécticas que identifican claramente las partes reversible e irreversible de la evolución del sistema. Así, usando una de estas estructuras conocida por las siglas (en inglés) de GENERIC, la estructura disipativa de los sistemas es identificada del mismo modo que lo es la Hamiltoniana para sistemas conservativos. Con esto, métodos (EEM) con precisión de segundo orden que conservan la energía, producen entropía y conservan los impulsos lineal y angular son formulados mediante el uso del operador derivada discreta introducido para asegurar la conservación de la Hamiltoniana y las simetrías de sistemas conservativos. Siguiendo estas directrices, se formulan dos tipos de métodos EEM basados en el uso de la temperatura o de la entropía como variable de estado termodinámica, lo que presenta importantes implicaciones que se discuten a lo largo de esta tesis. Entre las cuales cabe destacar que las condiciones de contorno de Dirichlet son naturalmente impuestas con la formulación basada en la temperatura. Por último, se validan dichos métodos y se comprueban sus mejores prestaciones en términos de la estabilidad y robustez en comparación con métodos estándar. This dissertation is concerned with the formulation, analysis and implementation of structure-preserving time integration methods for the solution of the initial(-boundary) value problems describing the dynamics of smooth dissipative systems, either finite- or infinite-dimensional ones. Such systems are understood as those involving thermo-mechanical coupling and/or internal dissipative effects modeled by internal state variables considered to be smooth in the sense that their evolutions follow continuos laws. The dynamics of such systems are ruled by the laws of thermodynamics and symmetries which constitutes the structure meant to be preserved in the numerical setting. For that, dissipative systems are geometrically described by metriplectic structures which clearly identify the reversible and irreversible parts of their dynamical evolution. In particular, the framework known by the acronym GENERIC is used to reveal the systems' dissipative structure in the same way as the Hamiltonian is for conserving systems. Given that, energy-preserving, entropy-producing and momentum-preserving (EEM) second-order accurate methods are formulated using the discrete derivative operator that enabled the formulation of Energy-Momentum methods ensuring the preservation of the Hamiltonian and symmetries for conservative systems. Following these guidelines, two kind of EEM methods are formulated in terms of entropy and temperature as a thermodynamical state variable, involving important implications discussed throughout the dissertation. Remarkably, the formulation in temperature becomes central to accommodate Dirichlet boundary conditions. EEM methods are finally validated and proved to exhibit enhanced numerical stability and robustness properties compared to standard ones.
Resumo:
A panel method free-wake model to analyse the rotor flapping is presented. The aerodynamic model consists of a panel method, which takes into account the three-dimensional rotor geometry, and a free-wake model, to determine the wake shape. The main features of the model are the wake division into a near-wake sheet and a far wake represented by a single tip vortex, and the modification of the panel method formulation to take into account this particular wake description. The blades are considered rigid with a flap degree of freedom. The problem solution is approached using a relaxation method, which enforces periodic boundary conditions. Finally, several code validations against helicopter and wind turbine experimental data are performed, showing good agreement
Resumo:
Second-order Lagrangian densities admitting a first-order Hamiltonian formalism are studied; namely, i) necessary and sufficient conditions for the Poincaré–Cartan form of a second-order Lagrangian on an arbitrary fibred manifold p : E → N to be projectable onto J 1 E are explicitly determined; ii) for each of such Lagrangians, a first-order Hamiltonian formalism is developed and a new notion of regularity is introduced; iii) the variational problems of this class defined by regular Lagrangians areprovedtobeinvolutive
Resumo:
In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car). Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth.
Resumo:
A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space HH . More precisely, given a quasinilpotent operator T on HH , there exists a compact quasinilpotent operator K in HH such that T is similar to a part of K⊕K⊕⋯⊕K⊕⋯K⊕K⊕⋯⊕K⊕⋯ acting on the direct sum of countably many copies of HH . We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of C0C0 -semigroups of quasinilpotent operators.
Resumo:
The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.
Resumo:
In this paper, we prove that infinite-dimensional vector spaces of α-dense curves are generated by means of the functional equations f(x)+f(2x)+⋯+f(nx)=0, with n≥2, which are related to the partial sums of the Riemann zeta function. These curves α-densify a large class of compact sets of the plane for arbitrary small α, extending the known result that this holds for the cases n=2,3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the nth power of the density approaches the Jordan content of the compact set which the curve densifies.
Resumo:
We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).
Resumo:
Notes from lectures at the New York Institute for mathematics and mechanics?
Resumo:
"Paper written under Contract Nonr. 58304."
Resumo:
Mode of access: Internet.
Resumo:
t. 1. Intégrales simples et multiples. Lʼéquation de Laplace et ses applications. Développments in séries. Applications géométriques du calcul infinitésimal.
Resumo:
This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates comprising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation based on Reddy's higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations, and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-thickness ratio are also discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Studiamo l'operatore di Ornstein-Uhlenbeck e il semigruppo di Ornstein-Uhlenbeck in un sottoinsieme aperto convesso $\Omega$ di uno spazio di Banach separabile $X$ dotato di una misura Gaussiana centrata non degnere $\gamma$. In particolare dimostriamo la disuguaglianza di Sobolev logaritmica e la disuguaglianza di Poincaré, e grazie a queste disuguaglianze deduciamo le proprietà spettrali dell'operatore di Ornstein-Uhlenbeck. Inoltre studiamo l'equazione ellittica $\lambdau+L^{\Omega}u=f$ in $\Omega$, dove $L^\Omega$ è l'operatore di Ornstein-Uhlenbeck. Dimostriamo che per $\lambda>0$ e $f\in L^2(\Omega,\gamma)$ la soluzione debole $u$ appartiene allo spazio di Sobolev $W^{2,2}(\Omega,\gamma)$. Inoltre dimostriamo che $u$ soddisfa la condizione di Neumann nel senso di tracce al bordo di $\Omega$. Questo viene fatto finita approssimazione dimensionale.