968 resultados para infinite dimensional differential geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os eventos de fissão nuclear, resultados da interação dos nêutrons com os núcleos dos átomos do meio hospedeiro multiplicativo, não estão presentes em algumas regiões dos reatores nucleares, e.g., moderador, refletor, e meios estruturais. Nesses domínios espaciais não há geração de potência nuclear térmica e, além disso, comprometem a eficiência computacional dos cálculos globais de reatores nucleares. Propomos nesta tese uma estratégia visando a aumentar a eficiência computacional dessas simulações eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas (baffle e refletor) em torno do núcleo ativo. Apresentamos algumas modelagens e discutimos a eficiência da aplicação dessas condições de contorno aproximadas tipo albedo para uma e duas regiões nãomultiplicativas, na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. A denominação Albedo, palavra de origem latina para alvura, foi originalmente definida como a fração da luz incidente que é refletida difusamente por uma superfície. Esta denominação latina permaneceu como o termo científico usual em astronomia e, nesta tese, este conceito é estendido para reflexão de nêutrons. Estas condições de contorno tipo albedo SN não-convencional substituem aproximadamente as regiões de baffle e refletor no em torno do núcleo ativo do reator, desprezando os termos de fuga transversal no interior dessas regiões. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta tese, são exatas. Por eficiência computacional entende-se a análise da precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos considerando dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pivotal problem in Bayesian nonparametrics is the construction of prior distributions on the space M(V) of probability measures on a given domain V. In principle, such distributions on the infinite-dimensional space M(V) can be constructed from their finite-dimensional marginals---the most prominent example being the construction of the Dirichlet process from finite-dimensional Dirichlet distributions. This approach is both intuitive and applicable to the construction of arbitrary distributions on M(V), but also hamstrung by a number of technical difficulties. We show how these difficulties can be resolved if the domain V is a Polish topological space, and give a representation theorem directly applicable to the construction of any probability distribution on M(V) whose first moment measure is well-defined. The proof draws on a projective limit theorem of Bochner, and on properties of set functions on Polish spaces to establish countable additivity of the resulting random probabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of adaptive, closed-loop controllers known as self-tuning regulators present a robust method of eliminating thermoacoustic oscillations in modern gas turbines. These controllers are able to adapt to changes in operating conditions, and require very little pre-characterisation of the system. One piece of information that is required, however, is the sign of the system's high frequency gain (or its 'instantaneous gain'). This poses a problem: combustion systems are infinite-dimensional, and so this information is never known a priori. A possible solution is to use a Nussbaum gain, which guarantees closed-loop stability without knowledge of the sign of the high frequency gain. Despite the theory for such a controller having been developed in the 1980s, it has never, to the authors' knowledge, been demonstrated experimentally. In this paper, a Nussbaum gain is used to stabilise thermoacoustic instability in a Rijke tube. The sign of the high frequency gain of the system is not required, and the controller is robust to large changes in operating conditions - demonstrated by varying the length of the Rijke tube with time. Copyright © 2008 by Simon J. Illingworth & Aimee S. Morgans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in non-parametric Bayesian statistics, which tends to focus on models over probability distributions. Our approach applies a standard tool of stochastic process theory, the construction of stochastic processes from their finite-dimensional marginal distributions. The main contribution of the paper is a generalization of the classic Kolmogorov extension theorem to conditional probabilities. This extension allows a rigorous construction of nonparametric Bayesian models from systems of finite-dimensional, parametric Bayes equations. Using this approach, we show (i) how existence of a conjugate posterior for the nonparametric model can be guaranteed by choosing conjugate finite-dimensional models in the construction, (ii) how the mapping to the posterior parameters of the nonparametric model can be explicitly determined, and (iii) that the construction of conjugate models in essence requires the finite-dimensional models to be in the exponential family. As an application of our constructive framework, we derive a model on infinite permutations, the nonparametric Bayesian analogue of a model recently proposed for the analysis of rank data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we adopt a differential-geometry viewpoint to tackle the problem of learning a distance online. As this problem can be cast into the estimation of a fixed-rank positive semidefinite (PSD) matrix, we develop algorithms that exploits the rich geometry structure of the set of fixed-rank PSD matrices. We propose a method which separately updates the subspace of the matrix and its projection onto that subspace. A proper weighting of the two iterations enables to continuously interpolate between the problem of learning a subspace and learning a distance when the subspace is fixed. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two main perspectives have been developed within the Multidisciplinary Design Optimization (MDO) literature for classifying and comparing MDO architectures: a numerical point of view and a formulation/data flow point of view. Although significant work has been done here, these perspectives have not provided much in the way of a priori information or predictive power about architecture performance. In this report, we outline a new perspective, called the geometric perspective, which we believe will be able to provide such predictive power. Using tools from differential geometry, we take several prominent architectures and describe mathematically how each constructs the space through which it moves. We then consider how the architecture moves through the space which it has constructed. Taken together, these investigations show how each architecture relates to the original feasible design manifold, how the architectures relate to each other, and how each architecture deals with the design coupling inherent to the original system. This in turn lays the groundwork for further theoretical comparisons between and analyses of MDO architectures and their behaviour using tools and techniques derived from differential geometry. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of hydrodynamically self-excited jets to lock into strong external forcing is well known. Their dynamics before lock-in and the specific bifurcations through which they lock in, however, are less well known. In this experimental study, we acoustically force a low-density jet around its natural global frequency. We examine its response leading up to lock-in and compare this to that of a forced van der Pol oscillator. We find that, when forced at increasing amplitudes, the jet undergoes a sequence of two nonlinear transitions: (i) from periodicity to T{double-struck}2 quasiperiodicity via a torus-birth bifurcation; and then (ii) from T{double-struck}2 quasiperiodicity to 1:1 lock-in via either a saddle-node bifurcation with frequency pulling, if the forcing and natural frequencies are close together, or a torus-death bifurcation without frequency pulling, but with a gradual suppression of the natural mode, if the two frequencies are far apart. We also find that the jet locks in most readily when forced close to its natural frequency, but that the details contain two asymmetries: the jet (i) locks in more readily and (ii) oscillates more strongly when it is forced below its natural frequency than when it is forced above it. Except for the second asymmetry, all of these transitions, bifurcations and dynamics are accurately reproduced by the forced van der Pol oscillator. This shows that this complex (infinite-dimensional) forced self-excited jet can be modelled reasonably well as a simple (three-dimensional) forced self-excited oscillator. This result adds to the growing evidence that open self-excited flows behave essentially like low-dimensional nonlinear dynamical systems. It also strengthens the universality of such flows, raising the possibility that more of them, including some industrially relevant flames, can be similarly modelled. © 2013 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an introduction to the topic of optimization on manifolds. The approach taken uses the language of differential geometry, however,we choose to emphasise the intuition of the concepts and the structures that are important in generating practical numerical algorithms rather than the technical details of the formulation. There are a number of algorithms that can be applied to solve such problems and we discuss the steepest descent and Newton's method in some detail as well as referencing the more important of the other approaches.There are a wide range of potential applications that we are aware of, and we briefly discuss these applications, as well as explaining one or two in more detail. © 2010 Springer -Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a need for a stronger theoretical understanding of Multidisciplinary Design Optimization (MDO) within the field. Having developed a differential geometry framework in response to this need, we consider how standard optimization algorithms can be modeled using systems of ordinary differential equations (ODEs) while also reviewing optimization algorithms which have been derived from ODE solution methods. We then use some of the framework's tools to show how our resultant systems of ODEs can be analyzed and their behaviour quantitatively evaluated. In doing so, we demonstrate the power and scope of our differential geometry framework, we provide new tools for analyzing MDO systems and their behaviour, and we suggest hitherto neglected optimization methods which may prove particularly useful within the MDO context. Copyright © 2013 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The differences between connectionism and symbolicism in artificial intelligence (AI) are illustrated on several aspects in details firstly; then after conceptually decision factors of connectionism are proposed, the commonalities between connectionism and symbolicism are tested to make sure, by some quite typical logic mathematics operation examples such as "parity"; At last, neuron structures are expanded by modifying neuron weights and thresholds in artificial neural networks through adopting high dimensional space geometry cognition, which give more overall development space, and embodied further both commonalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mandarin keyword spotting system was investigated, and a new approach was proposed based on the principle of homology continuity and point location analysis in high-dimensional space geometry theory which are both parts of biomimetic pattern recognition theory. This approach constructed a hyper-polyhedron with sample points in the training set and calculated the distance between each test point and the hyper-polyhedron. The classification resulted from the value of those distances. The approach was tested by a speech database which was created by ourselves. The performance was compared with the classic HMM approach and the results show that the new approach is much better than HMM approach when the training data is not sufficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new model of pattern recognition principles-Biomimetic Pattern Recognition, which is based on "matter cognition" instead of "matter classification", has been proposed. As a important means realizing Biomimetic Pattern Recognition, the mathematical model and analyzing method of ANN get breakthrough: a novel all-purpose mathematical model has been advanced, which can simulate all kinds of neuron architecture, including RBF and BP models. As the same time this model has been realized using hardware; the high-dimension space geometry method, a new means to analyzing ANN, has been researched.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new model of pattern recognition principles-Biomimetic Pattern Recognition, which is based on "matter cognition" instead of "matter classification", has been proposed. As a important means realizing Biomimetic Pattern Recognition, the mathematical model and analyzing method of ANN get breakthrough: a novel all-purpose mathematical model has been advanced, which can simulate all kinds of neuron architecture, including RBF and BP models. As the same time this model has been realized using hardware; the high-dimension space geometry method, a new means to analyzing ANN, has been researched.