909 resultados para high-turbidity coastal environments
Resumo:
South Florida has been subject to considerable changes during the last 100 years. This study provides a detailed survey of the presence, concentration levels, and spatial distribution of organic and inorganic contaminants in sediment samples collected within the coastal environments of southwest Florida. It evaluates the potential contributions and effects of the urban and agricultural development to the pollution loading of the estuarine sediments. And it also provides information regarding chronology of contamination at impacted sites. Copper was found to be the most critical contaminant among the trace metals. 12% of the samples exceeded the Threshold Effects Level (TEL). None of organic contaminants measured exceeded the Probable Effects Level (PEL) criteria. Total PAHs concentrations exceeded the TEL criteria in 6% of the samples. The evaluation for the chronology of contamination showed a significant increase with time of every contaminant analyzed. Fluorescence spectroscopy proves to be a good method for fast screening PAHs.
Resumo:
This study examined the occurrence of pharmaceuticals and personal care products (PPCP's) in surface waters of Florida and their potential to be use as indicators of wastewater contamination. Previous studies have shown that elimination of pharmaceuticals in municipal sewage treatment plants is often incomplete. Aquatic ecosystems are under increased stress from human activities, particularly in heavily populated areas. The purpose of this study was to find an ideal indicator for wastewater. The applied methods, GC/MS and LC/MS, were suitable for the determination of pharmaceuticals and personal care products in aqueous environmental samples to the lower parts-per-trillion (ng/L) level. As a result of this study a snapshot view of the occurrence of pharmaceuticals and personal care products in south Florida was produced. PPCP's were commonly detected in coastal environments of South Florida at relatively low concentrations. In general, PPCP's were higher inside the canals and contained bodies of water than in open water systems. Caffeine was successfully used to describe impacted versus pristine locations. However, no particular correlation was observed among caffeine and other traditional water quality parameters.
Resumo:
Reservoirs are the main sources of surface water in Brazil´s semiarid region. The majority of these water supplies, however, are compromised by eutrophication. A severe drought in 2012 contributed to significant losses in water volume, influencing the availability of resources (nutrients and light) for phytoplankton. The aim of this study is to understand the dynamics of the functional groups of phytoplankton and the factors that affect them during a severe drought in the semiarid reservoirs of the northeast. We therefore studied the Dourado, Gargalheiras and Passagem das Traíras reservoirs in Rio Grande do Norte from January 2012 to January 2013. The effect of drought favoured homogeneity within the reservoir, in relation to biotic and abiotic variables, notably the absence of water supply given the lack of flow from its tributaries (intermittent river). The phytoplankton functional groups of bloomforming cyanobacteria (SN, S1 and M) dominated throughout the year 2012, in both the shallow and deep areas of the three reservoirs studied. The groups were related to high concentrations of volatile solids, total phosphorus and ammonia, and high turbidity. Cylindrospermopsis raciborskii (SN group) was the species with the greatest biomass in the three reservoirs. M group (Sphaerocavum brasiliense) performed better in shallow waters with more available phosphorus. Our data showed that high concentrations of nutrients and low availability of light, besides the stability of the water column due to lack of flow and the system´s high residence time, favoured the dominance of bloom-forming cyanobacteria groups, especially those tolerant to shadow
Resumo:
The longshore sediment transport (LST) is determinant for the occurrence of morphological changes in coastal environments. Understanding their movement mechanisms and transport is an essential source of information for the project design and coastal management plans. This study aims to characterize, initially, the active hydrodynamic circulation in the study area, comprised of four beach sectors from the south coast of Natal, assessing the average annual LST obtained through three proven equations (CERC, Kamphuis and Bayram et al.), defining the best formulation for the study area in question, and analyze the seasonal variability and the decadal transport evolution. The coastal area selected for this work constitutes one of the main tourist corridors in the city, but has suffered serious damage resulting from associated effects of hydrodynamic forcings and their disorderly occupation. As a tool was used the Coastal Modelling System of Brazil (SMC-Brazil), which presents integrated a series of numerical models and a database, properly calibrated and validated for use in developing projects along the Brazilian coastline. The LST rates were obtained for 15 beach profiles distributed throughout the study area. Their extensions take into account the depth of closure calculated by Harllermeier equation, and regarding the physical properties of the sediment, typical values of sandy beaches were adopted, except for the average diameter, which was calculated through an optimization algorithm based on equilibrium profile formulation proposed by Dean. Overall, the results showed an intensification of hydrodynamic forcings under extreme sea wave conditions, especially along the headlands exist in the region. Among the analyzed equations, Bayram et al. was the most suitable for this type of application, with a predominant transport in the south-north direction and the highest rates within the order of 700.000 m3 /year to 2.000.000 m3 /year. The seasonal analysis also indicated a longitudinal transport predominance in the south to north, with the highest rates associated with the fall and winter seasons. In these periods are observed erosive beach states, which indicate a direct relationship between the sediment dynamics and the occurrence of more energetic sea states. Regarding the decadal evolution of transportation, it was found a decrease in transport rate from the 50’s to the 70’s, followed by an increase until the 2000’s, coinciding with the beginning of urbanization process in some stretches of the studied coastline.
Resumo:
Seagrass meadows are important marine carbon sinks, yet they are threatened and declining worldwide. Seagrass management and conservation requires adequate understanding of the physical and biological factors determining carbon content in seagrass sediments. Here, we identified key factors that influence carbon content in seagrass meadows across several environmental gradients in Moreton Bay, SE Queensland. Sampling was conducted in two regions: (1) Canopy Complexity, 98 sites on the Eastern Banks, where seagrass canopy structure and species composition varied while turbidity was consistently low; and (2) Turbidity Gradient, 11 locations across the entire bay, where turbidity varied among sampling locations. Sediment organic carbon content and seagrass structural complexity (shoot density, leaf area, and species specific characteristics) were measured from shallow sediment and seagrass biomass cores at each location, respectively. Environmental data were obtained from empirical measurements (water quality) and models (wave height). The key factors influencing carbon content in seagrass sediments were seagrass structural complexity, turbidity, water depth, and wave height. In the Canopy Complexity region, carbon content was higher for shallower sites and those with higher seagrass structural complexity. When turbidity varied along the Turbidity Gradient, carbon content was higher at sites with high turbidity. In both regions carbon content was consistently higher in sheltered areas with lower wave height. Seagrass canopy structure, water depth, turbidity, and hydrodynamic setting of seagrass meadows should therefore be considered in conservation and management strategies that aim to maximize sediment carbon content.
Resumo:
This research examines three potential mechanisms by which bacteria can adapt to different temperatures: changes in strain-level population structure, gene regulation and particle colonization. For the first two mechanisms, I utilize bacterial strains from the Vibrionaceae family due to their ease of culturability, ubiquity in coastal environments and status as a model system for marine bacteria. I first examine vibrio seasonal dynamics in temperate, coastal water and compare the thermal performance of strains that occupy different thermal environments. Our results suggest that there are tradeoffs in adaptation to specific temperatures and that thermal specialization can occur at a very fine phylogenetic scale. The observed thermal specialization over relatively short evolutionary time-scales indicates that few genes or cellular processes may limit expansion to a different thermal niche. I then compare the genomic and transcriptional changes associated with thermal adaptation in closely-related vibrio strains under heat and cold stress. The two vibrio strains have very similar genomes and overall exhibit similar transcriptional profiles in response to temperature stress but their temperature preferences are determined by differential transcriptional responses in shared genes as well as temperature-dependent regulation of unique genes. Finally, I investigate the temporal dynamics of particle-attached and free-living bacterial community in coastal seawater and find that microhabitats exert a stronger forcing on microbial communities than environmental variability, suggesting that particle-attachment could buffer the impacts of environmental changes and particle-associated communities likely respond to the presence of distinct eukaryotes rather than commonly-measured environmental parameters. Integrating these results will offer new perspectives on the mechanisms by which bacteria respond to seasonal temperature changes as well as potential adaptations to climate change-driven warming of the surface oceans.
Resumo:
Marine mammals exploit the efficiency of sound propagation in the marine environment for essential activities like communication and navigation. For this reason, passive acoustics has particularly high potential for marine mammal studies, especially those aimed at population management and conservation. Despite the rapid realization of this potential through a growing number of studies, much crucial information remains unknown or poorly understood. This research attempts to address two key knowledge gaps, using the well-studied bottlenose dolphin (Tursiops truncatus) as a model species, and underwater acoustic recordings collected on four fixed autonomous sensors deployed at multiple locations in Sarasota Bay, Florida, between September 2012 and August 2013. Underwater noise can hinder dolphin communication. The ability of these animals to overcome this obstacle was examined using recorded noise and dolphin whistles. I found that bottlenose dolphins are able to compensate for increased noise in their environment using a wide range of strategies employed in a singular fashion or in various combinations, depending on the frequency content of the noise, noise source, and time of day. These strategies include modifying whistle frequency characteristics, increasing whistle duration, and increasing whistle redundancy. Recordings were also used to evaluate the performance of six recently developed passive acoustic abundance estimation methods, by comparing their results to the true abundance of animals, obtained via a census conducted within the same area and time period. The methods employed were broadly divided into two categories – those involving direct counts of animals, and those involving counts of cues (signature whistles). The animal-based methods were traditional capture-recapture, spatially explicit capture-recapture (SECR), and an approach that blends the “snapshot” method and mark-recapture distance sampling, referred to here as (SMRDS). The cue-based methods were conventional distance sampling (CDS), an acoustic modeling approach involving the use of the passive sonar equation, and SECR. In the latter approach, detection probability was modelled as a function of sound transmission loss, rather than the Euclidean distance typically used. Of these methods, while SMRDS produced the most accurate estimate, SECR demonstrated the greatest potential for broad applicability to other species and locations, with minimal to no auxiliary data, such as distance from sound source to detector(s), which is often difficult to obtain. This was especially true when this method was compared to traditional capture-recapture results, which greatly underestimated abundance, despite attempts to account for major unmodelled heterogeneity. Furthermore, the incorporation of non-Euclidean distance significantly improved model accuracy. The acoustic modelling approach performed similarly to CDS, but both methods also strongly underestimated abundance. In particular, CDS proved to be inefficient. This approach requires at least 3 sensors for localization at a single point. It was also difficult to obtain accurate distances, and the sample size was greatly reduced by the failure to detect some whistles on all three recorders. As a result, this approach is not recommended for marine mammal abundance estimation when few recorders are available, or in high sound attenuation environments with relatively low sample sizes. It is hoped that these results lead to more informed management decisions, and therefore, more effective species conservation.
Resumo:
Studies of authigenic phosphorus (P) minerals in marine sediments typically focus on authigenic carbonate fluorapatite, which is considered to be the major sink for P in marine sediments and can easily be semi-quantitatively extracted with the SEDEX sequential extraction method. The role of other potentially important authigenic P phases, such as the reduced iron (Fe) phosphate mineral vivianite (Fe(II)3(PO4)*8H2O) has so far largely been ignored in marine systems. This is, in part, likely due to the fact that the SEDEX method does not distinguish between vivianite and P associated with Fe-oxides. Here, we show that vivianite can be quantified in marine sediments by combining the SEDEX method with microscopic and spectroscopic techniques such as micro X-ray fluorescence (µXRF) elemental mapping of resin-embedded sediments, as well as scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and powder X-ray diffraction (XRD). We further demonstrate that resin embedding of vertically intact sediment sub-cores enables the use of synchrotron-based microanalysis (X-ray absorption near-edge structure (XANES) spectroscopy) to differentiate between different P burial phases in aquatic sediments. Our results reveal that vivianite represents a major burial sink for P below a shallow sulfate/methane transition zone in Bothnian Sea sediments, accounting for 40-50% of total P burial. We further show that anaerobic oxidation of methane (AOM) drives a sink-switching from Fe-oxide bound P to vivianite by driving the release of both phosphate (AOM with sulfate and Fe-oxides) and ferrous Fe (AOM with Fe-oxides) to the pore water allowing supersaturation with respect to vivianite to be reached. The vivianite in the sediment contains significant amounts of manganese (~4-8 wt.%), similar to vivianite obtained from freshwater sediments. Our results indicate that methane dynamics play a key role in providing conditions that allow for vivianite authigenesis in coastal surface sediments. We suggest that vivianite may act as an important burial sink for P in brackish coastal environments worldwide.
Resumo:
La actual ciudad de Akko in Israel, ha tenido muchos nombres a lo largo de los siglos de su prolongado asentamiento. El nombre de Acre, con el que se le conoce en el mundo Occidental, es el residuo del nombre de San Juan de Acre que le dieron sus habitantes cruzados en el s. XII de la era Cristiana. Sin embargo, el nombre de ‘Akko y sus derivados, tienen una larga historia. Bajo tal nombre, aparece ya en las fuentes escritas de comienzos el II Milenio a.C., cuando e produjo la primera urbanización del lugar. Se mantuvo como ‘Akko, ‘Ake, etc…a lo largo de los siglos posteriors, a pesar de los inentos de varios dirigentes de cambiarelo. El asentamiento se trasladó, a causa de los cambios en la línea de costa y del río Na’aman o Belos, desde el antiguo Tel Akko a la bahía, en la que se estableció un puerto artificial,reconstruido y renovado reiteradamente durante más de 2000 años. El primer nombre conocido del sitio original del asentamiento, el tell, data de época de los cruzados. Este sufrió una alteración de su nombre, reflejo de la transformación de la historia de Akko, en la que la intervención occidental (europea9, jugó un papel decisivo.
Resumo:
Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.
Resumo:
Although stable isotope ratios are increasingly used to investigate the trophic ecology of marine organisms, their spatial variations are still poorly understood in the coastal environment. In this study, we measured the stable isotope composition (δ13C, δ15N) of suspended particulate organic matter (SPOM) (primary producer), a suspension feeder, the great scallop Pecten maximus (primary consumer), megabenthic decapods and benthic fishes (secondary consumers) along a depth gradient (from 5m to 155m depth) across the continental shelf of the Bay of Biscay. Although the three trophic levels exhibited similar δ13C patterns along the gradient, the δ15N patterns varied between SPOM, scallops and carnivores. The δ15N difference between SPOM and scallops decreased with increasing depth, suggesting that non trophic factors may affect the stable isotope composition of scallops at deepest sampling stations. An opposed trend was found between scallops and carnivores, suggesting that the trophic level of these carnivores increased at higher depth, possibly as an adaptation to lower prey abundances. Although our results suggest that primary consumers are suitable to establish isotopic baselines in coastal environments, we stress the need for further studies aiming at characterizing the variability of stable isotopes in coastal biota, and the respective effects of baseline, trophic and metabolic factors in their isotopic composition.
Resumo:
Tese de Doutoramento, Biologia (Ciências do Mar), 5 de Julho de 2013, Universidade dos Açores.
Resumo:
The response of zooplankton assemblages to variations in the water quality of four man-made lakes, caused by eutrophication and siltation, was investigated by means of canonical correspondence analysis. Monte Carlo simulations using the CCA eingenvalues as test statistics revealed that changes in zooplankton species composition along the environmental gradients of trophic state and abiogenic turbidity were highly significant. The species Brachionus calyciflorus, Thermocyclops sp. and Argyrodiaptomus sp. were good indicators of eutrophic conditions while the species Brachionus dolabratus, Keratella tropica and Hexarthra sp. were good indicators of high turbidity due to suspended sediments. The rotifer genus Brachionus was the most species-rich taxon, comprising five species which were associated with different environmental conditions. Therefore, we tested whether this genus alone could potentially be a better biological indicator of these environmental gradients than the entire zooplankton assemblages or any other random set of five species. The ordination results show that the five Brachionus species alone did not explain better the observed pattern of environmental variation than most random sets of five species. Therefore, this genus could not be selected as a target taxon for more intensive environmental monitoring as has been previously suggested by Attayde and Bozelli (1998). Overall, our results show that changes in the water quality of man-made lakes in a tropical semi-arid region have significant effects on the structure of zooplankton assemblages that can potentially affect the functioning of these ecosystems
Resumo:
Epilithic biofilm on rocky shores is regulated by physico-chemical and biological factors and is important as a source of food for benthic organisms. The influences of environmental and grazing pressure on spatial variability of biomass of biofilm were evaluated on shores on the north coast of São Paulo State (SE Brazil). A general trend of greater abundance of microalgae was observed lower on the shore, but neither of the environmental factors evaluated (wave exposure and shore level) showed consistent effects, and differences were found among specific shores or times (September 2007 and March 2008). The abundance of slow-moving grazers (limpets and littorinids) showed a negative correlation with chlorophyll a concentration on shores. However, experimental exclusion of these grazers failed to show consistent results at small spatial scales. Observations of divergent abundances of the isopod Ligia exotica and biomass of biofilm on isolated boulders on shores led to a short exclusion experiment, where the grazing pressure by L. exotica significantly decreased microalgal biomass. The result suggests that grazing activities of this fast-moving consumer probably mask the influence of slow-moving grazers at small spatial scales, while both have an additive effect at larger scales that masks environmental influences. This is the first evaluation of the impact of the fast-moving herbivore L. exotica on microalgal biomass on rocky shores and opens an interesting discussion about the role of these organisms in subtropical coastal environments.